Rectangular Angle

on . Posted in Structural Engineering

L beam rectangular 1Rectangular angle, also called angle or angle iron, is a L-shaped structural member with rectangular legs.  An angle iron has an L-shaped cross-section formed by bending a piece  of steel at a 90-degree angle.  This type of angle iron has unequal length sides forming a 90-degree corner.  It's commonly used as a structural component in various construction and engineering applications due to its rigidity and load-bearing capacity.

Rectangular Angle Index

 

area of a Rectangular Angle formula

\(\large{ A =   t \; \left( w  +  d \right)  }\)
Symbol English Metric
\(\large{ A }\) = area \(\large{ in^2 }\)  \(\large{ mm^2 }\) 
\(\large{ d }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ t }\) = thickness \(\large{ in }\) \(\large{ mm }\)
\(\large{ w }\) = width \(\large{ in }\) \(\large{ mm }\)

 

Distance from Centroid of a Rectangular Angle formulas

\(\large{ C_x =  \frac{ t \; \left( 2\;c  \;+\;  l \right)  \;+\;  c^2  }{ 2 \; \left( c  \;+\;  l  \right)  }  }\)

\(\large{ C_y =  \frac{ t \; \left( 2\;d  \;+\;  w \right)  \;+\;  d^2  }{ 2 \; \left( d  \;+\;  w  \right)  }   }\) 

Symbol English Metric
\(\large{ C }\) = distance from centroid \(\large{ in }\)  \(\large{ mm }\) 
\(\large{ d }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ l }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ t }\) = thickness \(\large{ in }\) \(\large{ mm }\)
\(\large{ c }\) = width \(\large{ in }\) \(\large{ mm }\)
\(\large{ w }\) = width \(\large{ in }\) \(\large{ mm }\)

 

Elastic Section Modulus of a Rectangular Angle formulas

\(\large{ S_x =  \frac{ I_x }{ C_y   } }\) 

\(\large{ S_y =  \frac{ I_y }{ C_x   } }\) 

Symbol English Metric
\(\large{ S }\) = elastic section modulus \(\large{ in^3 }\) \(\large{ mm^3 }\)
\(\large{ C }\) = distance from centroid \(\large{ in }\) \(\large{ mm }\)
\(\large{ I }\) = moment of inertia \(\large{ in^4 }\) \(\large{ mm^4 }\)

 

Perimeter of a Rectangular Angle formula

\(\large{ P =   2 \; \left( w  +  l \right)  }\) 
Symbol English Metric
\(\large{ P }\) = perimeter \(\large{ in }\) \(\large{ mm }\)
\(\large{ l }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ w }\) = width \(\large{ in }\) \(\large{ mm }\)

 

Polar Moment of Inertia of a Rectangular Angle formulas

\(\large{ J_z =  I_x  +  I_y }\) 

\(\large{ J_{z1} =  I_{x1}  +  I_{y1} }\) 

Symbol English Metric
\(\large{ J }\) = torsional constant \(\large{ in^4 }\) \(\large{ mm^4 }\)
\(\large{ I }\) = moment of inertia \(\large{ in^4 }\) \(\large{ mm^4 }\)

 

Radius of Gyration of a Rectangular Angle formulas

\(\large{ k_x =   \frac{   t\;y^3 \;+\;  w \; \left( l \;-\; y  \right)^3   \;-\;  \left( w \;-\; t  \right)  \; \left( l \;-\; y \;-\; t  \right)^3   }{ 3\;t \;\; \left( w  \;+\;  l \;-\; t  \right)  }     }\) 

\(\large{ k_y =    \frac{   t\;z^3  \;+\;  l \; \left( w \;-\; z  \right)^3   \;-\;  \left( l \;-\; t  \right) \;  \left( w \;-\; z \;-\; t  \right)^3   }{ 3\;t \;\; \left( w  \;+\;  l \;-\; t  \right)  }     }\) 

\(\large{ k_z =    \sqrt{  k_{x}{^2} + k_{y}{^2}  } }\)

\(\large{ k_{x1} =  \sqrt{  \frac { I_{x1} }{ A  }   }   }\)

\(\large{ k_{y1} =  \sqrt{  \frac { I_{y1} }{ A  }   }   }\)

\(\large{ k_{z1} =    \sqrt{  k_{x1}{^2} + k_{y1}{^2}  }  }\)

Symbol English Metric
\(\large{ k }\) = radius of gyration \(\large{ in }\) \(\large{ mm }\)
\(\large{ l }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ y }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ I }\) = moment of inertia \(\large{ in^4 }\) \(\large{ mm^4 }\)
\(\large{ t }\) = thickness \(\large{ in }\) \(\large{ mm }\)
\(\large{ w }\) = width \(\large{ in }\) \(\large{ mm }\)
\(\large{ z }\) = width \(\large{ in }\) \(\large{ mm }\)

 

Second Moment of Area of a Rectangular Angle formulas

\(\large{ I_x =   \frac{  t\;y^3  \;+\; w \; \left( l \;-\; y \right)^3  \;-\;  \left(  w \;-\; t \right)  \;  \left( l \;-\; y  \;-\; t \right)^3   }{3}   }\) 

\(\large{ I_y =   \frac{  t\;z^3  \;+\; l \; \left( w \;-\; z \right)^3  \;-\;  \left(  l \;-\; t \right)  \;  \left( w \;-\; z  \;-\; t \right)^3   }{3}   }\) 

\(\large{ I_{x1} =  I_x  +  A\; C_{y}{^2} }\) 

\(\large{ I_{y1} =  I_y  +  A \;C_{x}{^2} }\)

Symbol English Metric
\(\large{ I }\) = moment of inertia \(\large{ in^4 }\) \(\large{ mm^4 }\)
\(\large{ A }\) = area \(\large{ in^2 }\) \(\large{ mm^2 }\)
\(\large{ C }\) = distance from centroid \(\large{ in }\) \(\large{ mm }\)
\(\large{ l }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ y }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ t }\) = thickness \(\large{ in }\) \(\large{ mm }\)
\(\large{ w }\) = width \(\large{ in }\) \(\large{ mm }\)
\(\large{ z }\) = width \(\large{ in }\) \(\large{ mm }\)

 

Tortional Constant of a Rectangular Angle formula

\(\large{ J  =   \frac{ \left[  d \;-\; \left(  \frac{t}{2} \right)  \right]   \;+\;   \left[  w \;-\; \left(  \frac{t}{2}  \right)  \right] \; t^3 }{  3  }  }\) 
Symbol English Metric
\(\large{ J }\) = torsional constant \(\large{ in^4 }\) \(\large{ mm^4 }\)
\(\large{ d }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ t }\) = thickness \(\large{ in }\) \(\large{ mm }\)
\(\large{ w }\) = width \(\large{ in }\) \(\large{ mm }\)

 

Piping Designer Logo 1

Tags: Structural Steel