Rectangular Angle
Rectangular angle, also called angle or angle iron, is a L-shaped structural member with rectangular legs. An angle iron has an L-shaped cross-section formed by bending a piece of steel at a 90-degree angle. This type of angle iron has unequal length sides forming a 90-degree corner. It's commonly used as a structural component in various construction and engineering applications due to its rigidity and load-bearing capacity.
- See Article Link - Geometric Properties of Structural Shapes
- Tags: Structural Steel
Rectangular Angle Index
- Area of a Rectangular Angle
- Distance from Centroid of a Rectangular Angle
- Elastic Section Modulus of a Rectangular Angle
- Perimeter of a Rectangular Angle
- Polar Moment of Inertia of a Rectangular Angle
- Radius of Gyration of a Rectangular Angle
- Second Moment of Area of a Rectangular Angle
- Tortional Constant of a Rectangular Angle
area of a Rectangular Angle formula |
||
\(\large{ A = t \; \left( w + d \right) }\) | ||
Symbol | English | Metric |
\(\large{ A }\) = area | \(\large{ in^2 }\) | \(\large{ mm^2 }\) |
\(\large{ d }\) = height | \(\large{ in }\) | \(\large{ mm }\) |
\(\large{ t }\) = thickness | \(\large{ in }\) | \(\large{ mm }\) |
\(\large{ w }\) = width | \(\large{ in }\) | \(\large{ mm }\) |
Elastic Section Modulus of a Rectangular Angle formulas |
||
\(\large{ S_x = \frac{ I_x }{ C_y } }\) \(\large{ S_y = \frac{ I_y }{ C_x } }\) |
||
Symbol | English | Metric |
\(\large{ S }\) = elastic section modulus | \(\large{ in^3 }\) | \(\large{ mm^3 }\) |
\(\large{ C }\) = distance from centroid | \(\large{ in }\) | \(\large{ mm }\) |
\(\large{ I }\) = moment of inertia | \(\large{ in^4 }\) | \(\large{ mm^4 }\) |
Polar Moment of Inertia of a Rectangular Angle formulas |
||
\(\large{ J_z = I_x + I_y }\) \(\large{ J_{z1} = I_{x1} + I_{y1} }\) |
||
Symbol | English | Metric |
\(\large{ J }\) = torsional constant | \(\large{ in^4 }\) | \(\large{ mm^4 }\) |
\(\large{ I }\) = moment of inertia | \(\large{ in^4 }\) | \(\large{ mm^4 }\) |
Radius of Gyration of a Rectangular Angle formulas |
||
\(\large{ k_x = \frac{ t\;y^3 \;+\; w \; \left( l \;-\; y \right)^3 \;-\; \left( w \;-\; t \right) \; \left( l \;-\; y \;-\; t \right)^3 }{ 3\;t \;\; \left( w \;+\; l \;-\; t \right) } }\) \(\large{ k_y = \frac{ t\;z^3 \;+\; l \; \left( w \;-\; z \right)^3 \;-\; \left( l \;-\; t \right) \; \left( w \;-\; z \;-\; t \right)^3 }{ 3\;t \;\; \left( w \;+\; l \;-\; t \right) } }\) \(\large{ k_z = \sqrt{ k_{x}{^2} + k_{y}{^2} } }\) \(\large{ k_{x1} = \sqrt{ \frac { I_{x1} }{ A } } }\) \(\large{ k_{y1} = \sqrt{ \frac { I_{y1} }{ A } } }\) \(\large{ k_{z1} = \sqrt{ k_{x1}{^2} + k_{y1}{^2} } }\) |
||
Symbol | English | Metric |
\(\large{ k }\) = radius of gyration | \(\large{ in }\) | \(\large{ mm }\) |
\(\large{ l }\) = height | \(\large{ in }\) | \(\large{ mm }\) |
\(\large{ y }\) = height | \(\large{ in }\) | \(\large{ mm }\) |
\(\large{ I }\) = moment of inertia | \(\large{ in^4 }\) | \(\large{ mm^4 }\) |
\(\large{ t }\) = thickness | \(\large{ in }\) | \(\large{ mm }\) |
\(\large{ w }\) = width | \(\large{ in }\) | \(\large{ mm }\) |
\(\large{ z }\) = width | \(\large{ in }\) | \(\large{ mm }\) |
Second Moment of Area of a Rectangular Angle formulas |
||
\(\large{ I_x = \frac{ t\;y^3 \;+\; w \; \left( l \;-\; y \right)^3 \;-\; \left( w \;-\; t \right) \; \left( l \;-\; y \;-\; t \right)^3 }{3} }\) \(\large{ I_y = \frac{ t\;z^3 \;+\; l \; \left( w \;-\; z \right)^3 \;-\; \left( l \;-\; t \right) \; \left( w \;-\; z \;-\; t \right)^3 }{3} }\) \(\large{ I_{x1} = I_x + A\; C_{y}{^2} }\) \(\large{ I_{y1} = I_y + A \;C_{x}{^2} }\) |
||
Symbol | English | Metric |
\(\large{ I }\) = moment of inertia | \(\large{ in^4 }\) | \(\large{ mm^4 }\) |
\(\large{ A }\) = area | \(\large{ in^2 }\) | \(\large{ mm^2 }\) |
\(\large{ C }\) = distance from centroid | \(\large{ in }\) | \(\large{ mm }\) |
\(\large{ l }\) = height | \(\large{ in }\) | \(\large{ mm }\) |
\(\large{ y }\) = height | \(\large{ in }\) | \(\large{ mm }\) |
\(\large{ t }\) = thickness | \(\large{ in }\) | \(\large{ mm }\) |
\(\large{ w }\) = width | \(\large{ in }\) | \(\large{ mm }\) |
\(\large{ z }\) = width | \(\large{ in }\) | \(\large{ mm }\) |
Tags: Structural Steel