Skip to main content

Amps to Horsepower

 

Amps to Horsepower Formula

\( HP \;=\; \dfrac{  I \cdot V \cdot \eta \cdot PF }{ 746 }\)     (Amps to Horsepower)

\( I \;=\; \dfrac{  HP \cdot 746 }{  V \cdot \eta \cdot PF }\)

\( V \;=\; \dfrac{  HP \cdot 746 }{  I \cdot \eta \cdot PF }\)

\( \eta \;=\; \dfrac{   HP \cdot 746 }{  I \cdot V \cdot PF }\)

\( PF \;=\; \dfrac{  HP \cdot 746 }{ I \cdot V \cdot \eta  }\)

Symbol English Metric
\( HP \) = Horsepower \(lbf-ft\;/\;sec\) \(C\;/\;s\)
\( I \) = Amps \(A\) \(A\)
\( V \) = Voltage \(V\) \(V\)
\( \eta \) (Greek symbol eta) = Efficiency \(dimensionless\) \(dimensionless\)
\( PF \) = Power Factor \(dimensionless\) \(dimensionless\)
Amps to horsepower is the process of converting an electric current, measured in amperes, into mechanical power, expressed in horsepower.  Since electricity itself does not directly equal horsepower, the conversion requires knowledge of additional factors such as voltage, power factor, and efficiency of the motor or system.  Therefore, the conversion from amps to horsepower depends on the electrical characteristics of the circuit and the efficiency of the motor, meaning the same current can correspond to different horsepower values depending on the setup.

Piping Designer Logo 1   

 

 

 

 

 

 

 

 

Motor Horsepower Formulas

\(V\) = Voltage  -  \(I\) = Amps  -  \(PF\) = Power Factor  -  \(\eta\) = Efficiency  -  \(HP\) = Horsepower

To Find Direct Current Alternating Current
Single Phase Two Phase Four Wire Three Phase
Horsepower \(\large{\frac{ V \; I \; \%\eta }{ 746 } }\) \(\large{\frac{ V \; I \; \%\eta \; PF }{ 746 } }\) \(\large{\frac{ V \; I \; \%\eta \; PF \; 2 }{ 746 } }\) \(\large{\frac{ V \; I \; \%\eta \; PF \; 1.73 }{ 746 } }\)