3 connecting circles (a two-dimensional figure) has three equal length arcs connecting at the vertices bound by circles.
- a = b = c
- 3 arcs
- 3 vertexs
Arc Length of a Circle Arc Triangle formula
\(\large{ n = \frac{\pi}{3} \;r }\) |
|
Where:
Units |
English |
SI |
\(\large{ n }\) = arc length |
\(\large{ft}\) |
\(\large{m}\) |
\(\large{ \pi }\) = Pi |
\(\large{dimensionless}\) |
\(\large{ r }\) = radius |
\(\large{ft}\) |
\(\large{m}\) |
Area of a Circle Arc Triangle formula
\(\large{ A_{area} = \frac{ \left( \sqrt{ \frac{3}{2} } \;+\; 3 \right) \; r^2 \;-\; 3\;r\;n \;-\; 3\;r\;i }{2} }\) |
|
Where:
Units |
English |
SI |
\(\large{ A_{area} }\) = area |
\(\large{ft^2}\) |
\(\large{m^2}\) |
\(\large{ i }\) = arc insert |
\(\large{ft}\) |
\(\large{m}\) |
\(\large{ n }\) = arc length |
\(\large{ft}\) |
\(\large{m}\) |
\(\large{ r }\) = radius |
\(\large{ft}\) |
\(\large{m}\) |
Insert of a Circle Arc Triangle formula
\(\large{ i = 1 - \sqrt{ \frac{3}{2} } \; r }\) |
|
Where:
Units |
English |
SI |
\(\large{ i }\) = arc insert |
\(\large{ft}\) |
\(\large{m}\) |
\(\large{ r }\) = radius |
\(\large{ft}\) |
\(\large{m}\) |
Perimeter of a Circle Arc Triangle formula
Where:
Units |
English |
SI |
\(\large{ P }\) = perimeter |
\(\large{ft}\) |
\(\large{m}\) |
\(\large{ n }\) = arc length |
\(\large{ft}\) |
\(\large{m}\) |
Tags:
Equations for Perimeter
Equations for Arc Length