Right Isosceles Triangle
- Right isosceles triangle (a two-dimensional figure) has one side a right 90° interior angle and the other two angles are 45°.
- Angle bisector of a right isosceles triangle is a line that splits an angle into two equal angles.
- Circumcircle is a circle that passes through all the vertices of a two-dimensional figure.
- Hypotenuse of a right isosceles triangle is the longest side or the side opposite the right angle.
- Inscribed circle is the Iargest circle possible that can fit on the inside of a two-dimensional figure.
- Median of a right isosceles triangle is a line segment from a vertex (coiner point) to the midpoint of the opposite side.
- Semiperimeter is one half of the perimeter.
- Side of a right triangle is one half of the perimeter.
- Two sides are congruent.
- 3 edges
- 3 vertexs
- a = opposite leg
- b = adjacent leg
- c = hypotenuse
- Angles: ∠A, ∠B, ∠C
- Height: \(h_a\), \(h_b\), \(h_c\)
- Median: \(m_a\), \(m_b\), \(m_c\) - A line segment from a vertex (corner point) to the midpoint of the opposite side
- Angle bisectors: \(t_a\), \(t_b\), \(t_c\) - A line that splits an angle into two equal angles
Right Isosceles Triangle Index
- Angle Bisector of a Right Isosceles Triangle
- Area of a Right Isosceles Triangle
- Circumcircle of a Right Sosceles Triangle
- Height of a Right Isosceles Triangle
- Inscribed Circle of a Right Isosceles Triangle
- Median of a Right Isosceles Triangle
- Perimeter of a Right Isosceles Triangle
- Side of a Right Isosceles Triangle
- Trig Functions
Angle bisector of a Right Isosceles Triangle formulas |
||
\(\large{ t_a = 2\;b\;c \;\; cos \; \frac { \frac {A}{2} }{ b \;+\; c } }\) \(\large{ t_a = \sqrt { bc \; \frac { 1 \;-\; a^2 } { \left( b \;+\; c \right)^2 } } }\) \(\large{ t_b = 2\;a\;c \;\; cos \; \frac { \frac {B}{2} }{ a \;+\; c } }\) \(\large{ t_b = \sqrt { a\;c \; \frac { 1 \;-\; b^2 } { \left( a \;+\; c \right)^2 } } }\) \(\large{ t_c = a\;b \; \sqrt { \frac { 2 }{ a \;+\; b } } }\) |
||
Symbol | English | Metric |
\(\large{ t_a, t_b, t_c }\) = angle bisector | \(\large{ in }\) | \(\large{ mm }\) |
\(\large{ A, B, C }\) = angle | \(\large{ deg }\) | \(\large{ rad }\) |
\(\large{ a, b, c }\) = edge | \(\large{ in }\) | \(\large{ mm }\) |
Area of a Right Isosceles Triangle formulas |
||
\(\large{ A_{area} = \frac {h\;b} {2} }\) \(\large{ A_{area} = \frac {1} {2}\; b\;h }\) \(\large{ A_{area} = a\;b\; \frac {\sin \;y} {2} }\) |
||
Symbol | English | Metric |
\(\large{ A_{area} }\) = area | \(\large{ in^2 }\) | \(\large{ mm^2 }\) |
\(\large{ a, b, c }\) = edge | \(\large{ in }\) | \(\large{ mm }\) |
\(\large{ h }\) = height | \(\large{ in }\) | \(\large{ mm }\) |
Height of a Right Isosceles Triangle formula |
||
\(\large{ h_c = 2\; \frac {A_{area}}{b} }\) | ||
Symbol | English | Metric |
\(\large{ h^c }\) = height | \(\large{ in }\) | \(\large{ mm }\) |
\(\large{ A_{area} }\) = area | \(\large{ in^2 }\) | \(\large{ mm^2 }\) |
\(\large{ a, b, c }\) = edge | \(\large{ in }\) | \(\large{ mm }\) |
Side of a Right Isosceles Triangle formula |
||
\(\large{ a = P - b - c }\) \(\large{ a = 2\; \frac {A_{area}} {b\;\sin y} }\) \(\large{ b = P - a - c }\) \(\large{ b = 2\; \frac {A_{area}}{h} }\) \(\large{ c = P - a - b }\) |
||
Symbol | English | Metric |
\(\large{ a, b, c }\) = edge | \(\large{ in }\) | \(\large{ mm }\) |
\(\large{ A_{area} }\) = area | \(\large{ in^2 }\) | \(\large{ mm^2 }\) |
\(\large{ P }\) = perimeter | \(\large{ in }\) | \(\large{ mm }\) |
Tags: Triangle