Right Isosceles Triangle

on . Posted in Plane Geometry

  • Right isosceles triangle (a two-dimensional figure) has one side a right 90° interior angle and the other two angles are 45°.

right isosceles triangle 2

right isosceles triangle 4t

right isosceles triangle 3

 

 

 

 

 

 

 

 

 

  • Angle bisector of a right isosceles triangle is a line that splits an angle into two equal angles.
  • Circumcircle is a circle that passes through all the vertices of a two-dimensional figure.
  • Hypotenuse of a right isosceles triangle is the longest side or the side opposite the right angle.
  • Inscribed circle is the Iargest circle possible that can fit on the inside of a two-dimensional figure.
  • Median of a right isosceles triangle is a line segment from a vertex (coiner point) to the midpoint of the opposite side.
  • Semiperimeter is one half of the perimeter.
  • Side of a right triangle is one half of the perimeter.
  • Two sides are congruent.
  • 3 edges
  • 3 vertexs
  • a = opposite leg
  • b = adjacent leg
  • c = hypotenuse
  • Angles:  ∠A, ∠B, ∠C
  • Height:  \(h_a\), \(h_b\),  \(h_c\)
  • Median:  \(m_a\), \(m_b\), \(m_c\)  -  A line segment from a vertex (corner point) to the midpoint of the opposite side
  • Angle bisectors:  \(t_a\), \(t_b\), \(t_c\)  -  A line that splits an angle into two equal angles

Right Isosceles Triangle Index

 

Angle bisector of a Right Isosceles Triangle formulas

\(\large{ t_a =  2\;b\;c \;\; cos \;  \frac {  \frac {A}{2}  }{ b \;+\; c }    }\) 

\(\large{ t_a =  \sqrt {  bc \;  \frac { 1 \;-\; a^2  }  { \left(  b \;+\; c \right)^2 }  }  }\) 

\(\large{ t_b =  2\;a\;c \;\; cos \; \frac {  \frac {B}{2}  }{ a \;+\; c }   }\)

\(\large{ t_b =  \sqrt {  a\;c \;  \frac { 1 \;-\; b^2  }  { \left(  a \;+\; c \right)^2 }  }  }\)

\(\large{ t_c = a\;b \; \sqrt {  \frac { 2 }{ a \;+\; b }   } }\)

Symbol English Metric
\(\large{ t_a, t_b, t_c }\) = angle bisector \(\large{ in }\)   \(\large{ mm }\)
\(\large{ A, B, C }\) = angle \(\large{ deg }\) \(\large{ rad }\)
\(\large{ a, b, c }\) = edge \(\large{ in }\) \(\large{ mm }\)

 

Area of a Right Isosceles Triangle formulas

\(\large{ A_{area} = \frac {h\;b} {2} }\) 

\(\large{ A_{area} = \frac {1} {2}\; b\;h }\) 

\(\large{ A_{area} = a\;b\; \frac {\sin \;y} {2} }\) 

Symbol English Metric
\(\large{ A_{area} }\) = area \(\large{ in^2 }\) \(\large{ mm^2 }\)
\(\large{ a, b, c }\) = edge \(\large{ in }\) \(\large{ mm }\)
\(\large{ h }\) = height \(\large{ in }\) \(\large{ mm }\)

 

Circumcircle of a Right Iosceles Triangle formulas

\(\large{ R =  \frac  { 1 } { 2 } \;  \sqrt  {  a^2 + b^2  }  }\) 

\(\large{ R =  \frac  { H } { 2 }   }\) 

Symbol English Metric
\(\large{ R }\) = outcircle \(\large{ in }\) \(\large{ mm }\)
\(\large{ a, b, c }\) = edge \(\large{ in }\) \(\large{ mm }\)
\(\large{ H }\) = hypotenuse \(\large{ in }\) \(\large{ mm }\)

 

Height of a Right Isosceles Triangle formula

\(\large{ h_c = 2\; \frac {A_{area}}{b} }\) 
Symbol English Metric
\(\large{ h^c }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ A_{area} }\) = area \(\large{ in^2 }\) \(\large{ mm^2 }\)
\(\large{ a, b, c }\) = edge \(\large{ in }\) \(\large{ mm }\)

 

Inscribed Circle of a Right Isosceles Triangle formula

\(\large{ r =   \frac  { a \;+\; b \;-\; c }  { 2  }   }\) 
Symbol English Metric
\(\large{ r }\) = incircle \(\large{ in }\) \(\large{ mm }\)
\(\large{ a, b, c }\) = edge \(\large{ in }\) \(\large{ mm }\)

 

Median of a Right Isosceles Triangle formulas

\(\large{ m_a =  \sqrt {  \frac { 4\;b^2 \;+\; a^2 }{ 2 }   }   }\) 

\(\large{ m_b =  \sqrt {  \frac { 4\;a^2 \;+\; b^2 }{ 2 }   }   }\) 

\(\large{ m_c =  \frac {c}  {2} }\) 

Symbol English Metric
\(\large{ m_a, m_b, m_c }\) = median \(\large{ in }\) \(\large{ mm }\)
\(\large{ a, b, c }\) = edge \(\large{ in }\) \(\large{ mm }\)

 

Perimeter of a Right Isosceles Triangle formula

\(\large{ P = a + b + c }\) 
Symbol English Metric
\(\large{ P }\) = perimeter \(\large{ in }\) \(\large{ mm }\)
\(\large{ a, b, c }\) = edge \(\large{ in }\) \(\large{ mm }\)

 

Side of a Right Isosceles Triangle formula

\(\large{ a = P - b - c   }\) 

\(\large{ a = 2\; \frac {A_{area}} {b\;\sin y} }\) 

\(\large{ b = P - a - c   }\) 

\(\large{ b = 2\; \frac {A_{area}}{h} }\)

\(\large{ c = P - a - b   }\)

Symbol English Metric
\(\large{ a, b, c }\) = edge \(\large{ in }\) \(\large{ mm }\)
\(\large{ A_{area} }\) = area \(\large{ in^2 }\) \(\large{ mm^2 }\)
\(\large{ P }\) = perimeter \(\large{ in }\) \(\large{ mm }\)

 

Trig Functions

Find A
  • given a c :  \(\; sin \; A= a \div c \)
  • given b c :  \(\; cos \; A= b \div c \)
  • given a b :  \(\; tan \; A= a \div b \)
Find B
  • given a c :  \(\; sin \; B= a \div c \)
  • given b c :  \(\; cos \; B= b \div c \)
  • given a b :  \(\; tan \; B= b \div a \)
 Find a
  • given A c :  \(\; a= c*sin \; A \)
  • given A b :  \(\; a= b*tan \; A \)
Find b
  • given A c :  \(\; b= c*cos \; A \)
  • given A a :  \(\; b= a \div tan \; A \)
Find c
  • given A a :  \(\; c= a \div sin \; A \)
  • given A b :  \(\; c= b \div cos \; A \)
  • given a b :  \(\; c= \sqrt { a^2+b^2 } \)
Find Area
  • given a b :  \(\; Area= a\;b \div 2 \)

 

Piping Designer Logo 1

 

Tags: Triangle