Kite
Kite (a two-dimensional figure) is a quadrilateral with two pairs of adjacent sides that are congruent.
- Acute angle measures less than 90°.
- Congruent is all sides having the same lengths and angles measure the same.
- Diagonal is a line from one vertices to another that is non adjacent.
- Obtuse angle measures more than 90°.
- a = b
- c = d
- ∠B = ∠D
- ∠A ≠ ∠C
- ∠A + ∠B + ∠C + ∠D = 360°
- 2 diagonals
- 4 sides
- 4 vertexs
Angle of a Kite formulas
\(\large{ x = arccos \; \frac{ m^2 \;+\; a^2 \;-\; \left( \frac{d'}{2} \right)^2 }{ 2\;m\;a } }\) | |
\(\large{ y = \frac{360° \;-\; x \;-\; z}{2} }\) | |
\(\large{ z = arccos \; \frac{ \left( D'\;m \; \right)^2 \;+\; d^2 \;-\; \left( \frac{d'}{2} \right)^2 }{ 2\;\left( D'\;m \right)\;d } }\) |
Where:
\(\large{ x }\) = acute angle
\(\large{ y }\) = obtuse angle
\(\large{ z }\) = acute angle
\(\large{ d' }\) = diagonal
\(\large{ D' }\) = diagonal
\(\large{ m }\) = diagonal section
\(\large{ a, b, c, d }\) = edge
Area of a Kite formulas
\(\large{ A_{area} =\frac { d' \;D' }{2} }\) | |
\(\large{ A_{area} =\frac{1}{2} \; n \; r }\) |
Where:
\(\large{ A_{area} }\) = area
\(\large{ d' }\) = diagonal
\(\large{ D' }\) = diagonal
\(\large{ m, n, r, v }\) = diagonal
Diagonal of a Kite formulas
\(\large{ d' = 2\; \frac {A} {D'} }\) | |
\(\large{ D' = 2\; \frac {A} {d'} }\) |
Where:
\(\large{ d' }\) = diagonal
\(\large{ D' }\) = diagonal
\(\large{ A_{area} }\) = area
Edge of a Kite formulas
\(\large{ a = \frac {p} {2} - c }\) | |
\(\large{ c = \frac {p} {2} - a }\) |
Where:
\(\large{ a, b, c, d }\) = edge
\(\large{ p }\) = perimeter
Perimeter of a Kite formulas
\(\large{ p= 2\; \left( a + c \right) }\) | |
\(\large{ p= 2\;a + 2\;c }\) |
Where:
\(\large{ p }\) = perimeter
\(\large{ a, b, c, d }\) = edge