Skip to main content

Ideal Gas Law Moles

 

Ideal Gas Law Moles Formula

\( n  \;=\;  \dfrac{ p \cdot V }{ R \cdot T }\)     (Ideal Gas Law Moles)

\( p  \;=\;  \dfrac{ n \cdot R \cdot T }{ V }\)

\( V  \;=\; \dfrac{  n \cdot R \cdot T }{ p }\)

\( R  \;=\; \dfrac{  p \cdot V }{ n \cdot T }\) 

\( T  \;=\;  \dfrac{ p \cdot V }{ n \cdot R }\)

Symbol English Metric
\( n \) = Number of Moles of Gas \(dimensionless\) \(dimensionless\)
\( p \) = Gas Pressure \(lbf\;/\;in^2\) \(Pa\)
\( V \) = Gas Volume \( in^3 \) \( mm^3 \)
\( R \) = Specific Gas Constant (Gas Constant) \(ft-lbf\;/\;lbm-R\) \(J\;/\;kg-K\)
\( T \) = Gas Temperature \( R \) \( K  \)

ideal gas law 1

The ideal gas law, PV=nRT, can be rearranged to solve for the number of moles of a gasThis equation reveals that the quantity of a gas, in moles, is directly proportional to the pressure and volume it occupies, and inversely proportional to its absolute temperature.  The universal gas constant serves as the proportionality factor.  Therefore, at a given temperature, a higher pressure or a larger volume will correspond to a greater number of moles.  Conversely, for a fixed pressure and volume, a higher temperature implies a smaller number of moles.

 Piping Designer Logo 1