Specific Gas Constant
Specific Gas Constant Formula |
||
\( R \;=\; \dfrac{ R^* }{ MW }\) (Specific Gas Constant) \( R^* \;=\; R \cdot MW \) \( MW \;=\; \dfrac{ R^* }{ R }\) |
||
Symbol | English | Metric |
\( R \) = Specific Gas Constant | \(lbf-ft\;/\;lbm-R\) | \(J\;/\;kg-K\) |
\( R^* \) = Universal Gas Constant | \(lbf-ft\;/\;lbmol-R\) | \(J\;/\;kmol-K\) |
\( MW \) = Molecular Weight | \(lbm\;/\;lbmol\) | \(kg\;/\;kmol\) |
Specific gas constant, abbreviated as R, is a fundamental constant in thermodynamics and gas laws. It deals with the universal gas constant which is equal to 8.314 joules per Kelvin. By using the specific gas constant, the ideal gas law can be applied to different gases with different molar masses.
Specific Gas Constant | |
---|---|
Value of R | Unit |
SI Units | |
\(8.31446261815324\) | \(J \cdot K^{-1} \cdot mol^{-1}\) |
\(8.31446261815324\) | \(m^3 \cdot Pa \cdot K^{-1} \cdot mol^{-1}\) |
\(8.31446261815324\) | \(kg \cdot m^2 \cdot s^{-2} \cdot K^{-1} \cdot mol^{-1}\) |
Other Common Units | |
\(8314.46261815324\) | \(L \cdot Pa \cdot K^{-1} \cdot mol^{-1}\) |
\(8.31446261815324\) | \(L \cdot kPa \cdot K^{-1} \cdot mol^{-1}\) |
\(0.0831446261815324\) | \(L \cdot bar \cdot K^{-1} \cdot mol^{-1}\) |
\(8.31446261815324x10^7\) | \(erg \cdot K^{-1} \cdot mol^{-1}\) |
\(0.730240507295273\) | \(atm \cdot ft^3 \cdot lbmol^{-1} \cdot {^\circ}R^{-1}\) |
\(10.731577089016\) | \(psi \cdot ft^3 \cdot lbmol^{-1} \cdot {^\circ}R^{-1}\) |
\(1.985875279009\) | \(BTU \cdot lbmol^{-1} \cdot {^\circ}R^{-1}\) |
\(297.031214\) | \(inH_2O \cdot ft^3 \cdot lbmol^{-1} \cdot {^\circ}R^{-1}\) |
\(554.984319180\) | \(torr \cdot ft^3 \cdot lbmol^{-1} \cdot {^\circ}R^{-1}\) |
\(0.082057366080960\) | \(L \cdot atm \cdot K^{-1} \cdot mol^{-1}\) |
\(62.363598221529\) | \(L \cdot torr \cdot K^{-1} \cdot mol^{-1}\) |
\(1.98720425864083...\) | \(cal \cdot K^{-1} \cdot mol^{-1}\) |
\(8.20573660809596...x10^5\) | \(m^3 \cdot atm \cdot K^{-1} \cdot mol^{-1}\) |