Skip to main content

Average Angular Velocity Change in Velocity

 

Average Angular Velocity Change in Velocity Formulas

\( \bar {\omega} \;=\;  \dfrac{ \omega_t }{ t_t }\) 

\( \bar {\omega} \;=\;  \dfrac{ \omega_1 + \omega_2 + \omega_3 ... \omega_n }{ t_1 + t_2 + t_3 ... t_n }\)

Symbol English Metric
\( \bar {\omega} \)   (Greek symbol omega) = average angular velocity  \(deg \;/\; sec\) \(rad \;/\; s\)
\( \omega  \)   (Greek symbol omega) = angular velocity  \(deg \;/\; sec\) \(rad \;/\; s\)
\( t  \) = time \( sec \) \( s \)
\( \omega_t  \)   (Greek symbol omega) = total angular velocity  \(deg \;/\; sec\) \(rad \;/\; s\)
\( t_t  \) = total time \( sec \) \( s \)

angular velocity 2When an object makes changes in its angular velocity at different times that is an average angular velocity of any given velocities. 

Piping Designer Logo 1