Average Angular Velocity Change in Velocity
Average Angular Velocity Change in Velocity Formulas |
||
\( \bar {\omega} \;=\; \dfrac{ \omega_t }{ t_t }\) \( \bar {\omega} \;=\; \dfrac{ \omega_1 + \omega_2 + \omega_3 ... \omega_n }{ t_1 + t_2 + t_3 ... t_n }\) |
||
Symbol | English | Metric |
\( \bar {\omega} \) (Greek symbol omega) = Average Angular Velocity | \(deg \;/\; sec\) | \(rad \;/\; s\) |
\( \omega \) (Greek symbol omega) = Angular Velocity | \(deg \;/\; sec\) | \(rad \;/\; s\) |
\( t \) = Time | \( sec \) | \( s \) |
\( \omega_t \) (Greek symbol omega) = Total Angular Velocity | \(deg \;/\; sec\) | \(rad \;/\; s\) |
\( t_t \) = Total Time | \( sec \) | \( s \) |
When an object makes changes in its angular velocity at different times that is an average angular velocity of any given velocities.