Angular Displacement

Written by Jerry Ratzlaff on . Posted in Classical Mechanics

Angular displacement, abbreviated as \( \theta \) (Greek symbol theta), is the angle through which a body moves in a circular path.

 

Angular displacement formulas

\(\large{ \theta_d = \theta_f - \theta_i  }\) 
\(\large{ \theta_d = \frac{s}{r}   }\) 
\(\large{ \theta_d = \omega\; t + \frac{1}{2} \; a \; t^2  }\)

Where:

 Units English Metric
\(\large{ \theta_d }\)  (Greek symbol theta) = angular displacement  \(\large{deg}\) \(\large{rad}\)
\(\large{  a }\)  = acceleration \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\)
\(\large{ \theta_f }\)  (Greek symbol theta) = final angle  \(\large{deg}\) \(\large{rad}\)
\(\large{ \theta_i }\)  (Greek symbol theta) = initial angle  \(\large{deg}\) \(\large{rad}\)
\(\large{ \omega  }\)   (Greek symbol omega) = angular velocity \(\large{\frac{deg}{sec}}\) \(\large{\frac{rad}{s}}\)
\(\large{ s  }\) = distance covered by the object on the circular path \(\large{ft}\) \(\large{m}\)
\(\large{ r  }\) = radius of circular path \(\large{ft}\) \(\large{m}\)
\(\large{  t }\)  = time \(\large{sec}\) \(\large{s}\)

 

Piping Designer Logo Slide 1 

Tags: Equations for Displacement