Skip to main content

Angular Momentum of an Object with Linear Momentum

 

Angular Momentum of an Object with Linear Momentum Formula

\( L \;=\;  m \cdot v \cdot r_{\perp}  \)     (Angular Momentum of an Object with Linear Momentum)

\( m \;=\; \dfrac{ L }{ v \cdot r_{\perp} }\)

\( v \;=\; \dfrac{ L }{ m \cdot r_{\perp} }\)

\( r_{\perp} \;=\; \dfrac{ L }{ m \cdot v }\)

Symbol English Metric
\( L \) = angular momentum   \(lbm-ft^2 \;/\; sec\)  \(kg-m^2 \;/\; s\)  
\( m \)  (Greek symbol tau) = mass \(lbm\) \(kg\)
\( v \) = velocity  \(ft \;/\; sec\) \(m \;/\; s\)
\( r_{\perp} \) = perpendicular radius is from a chosen axis to the mass's line of motion \( ft \) \( m \)

Angular momentum and linear momentum are related but distinct concepts in physics.  Linear momentum of an object is defined as the product of its mass and velocity.  It’s a vector quantity describing the motion of an object in a straight line.  Angular momentum describes the rotational motion of an object about a point or axis.   

Piping Designer Logo 1