Morton Number

on . Posted in Dimensionless Numbers

Morton number, abbreviated as Mo, a dimensionless number, is the shape of bubbles or drops moving in a surrounding fluid or continuous phase.

 

Morton Number formula

\( Mo \;=\;  g \; \mu^4 \; \Delta \rho \;/\; \rho^2 \; \sigma^3 \) 
Symbol English Metric
\( Mo \) = Morton number \(dimensionless\)
\( g \) = gravitational acceleration  \(ft\;/\;sec^2\) \(m\;/\;s^2\)
\( \mu \) (Greek symbol mu) = dynamic viscosity of surrounding fluid \(lbf-sec\;/\;ft^2\) \( Pa-s \)
\( \Delta \rho \) = density differential in the phases \(lbm\;/\;ft^3\) \(kg\;/\;m^3\)
\( \rho \) (Greek symbol rho) = density of surrounding fluid \(lbm\;/\;ft^3\) \(kg\;/\;m^3\)
\( \sigma \) (Greek symbol sigma) = surface tension coefficient \(lbf\;/\;ft\) \(N\;/\;m\)

 

P D Logo 1 

Tags: Fluid