Morton Number
Morton number, abbreviated as Mo, a dimensionless number, is the shape of bubbles or drops moving in a surrounding fluid or continuous phase.
Morton Number formula |
||
\( Mo \;=\; g \; \mu^4 \; \Delta \rho \;/\; \rho^2 \; \sigma^3 \) | ||
Symbol | English | Metric |
\( Mo \) = Morton number | \(dimensionless\) | |
\( g \) = gravitational acceleration | \(ft\;/\;sec^2\) | \(m\;/\;s^2\) |
\( \mu \) (Greek symbol mu) = dynamic viscosity of surrounding fluid | \(lbf-sec\;/\;ft^2\) | \( Pa-s \) |
\( \Delta \rho \) = density differential in the phases | \(lbm\;/\;ft^3\) | \(kg\;/\;m^3\) |
\( \rho \) (Greek symbol rho) = density of surrounding fluid | \(lbm\;/\;ft^3\) | \(kg\;/\;m^3\) |
\( \sigma \) (Greek symbol sigma) = surface tension coefficient | \(lbf\;/\;ft\) | \(N\;/\;m\) |
Tags: Fluid