Water Hammer Unit Weight of Fluid

on . Posted in Fluid Dynamics

Tags: Water Hammer

 

Water Hammer Unit Weight of Fluid Formula

\(\large{  \gamma_f  =  \frac{ 144\; p_{sf} \; g }{ \alpha \; \Delta v }   }\)     (Water Hammer Unit Weight of Fluid)

\(\large{  \alpha  =  \frac{ 144\; p_{sf} \; g }{ \gamma_f \; \Delta v  }   }\)

\(\large{  144  =  \frac{ \gamma_f \; \alpha \; \Delta v }{ p_{sf} \; \Delta v }   }\)

\(\large{  p_{sf}  =  \frac{ \gamma_f \; \alpha \; \Delta v }{144 \;  g }   }\)

\(\large{  g  =  \frac{ \gamma_f \; \alpha \; \Delta v }{ 144 \; p_{sf} }   }\)

\(\large{  \Delta v  =  \frac{ 144\; p_{sf} \; g }{ \gamma_f \; \alpha }   }\)

Symbol English Metric
\(\large{  \gamma_f } \)  (Greek symbol gamma) = unit weight of fluid \(\large{\frac{lbm}{ft^3}}\) \(\large{\frac{N}{m^3}}\)
\(\large{ \alpha }\)  (Greek symbol alpha) = pressure wave velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)
\(\large{ \Delta v }\) = fluid velocity change \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)
\(\large{ g }\) = gravitational acceleration \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\)
\(\large{ p_{spf} }\) = maximum surge pressure for fluid \(\large{\frac{lbf}{in^2}}\) \(\large{Pa}\)


P D Logo 1

Tags: Water Hammer