Water Hammer Unit Weight of Fluid
Water Hammer Unit Weight of Fluid Formula |
||
\(\large{ \gamma_f = \frac{ 144\; p_{sf} \; g }{ \alpha \; \Delta v } }\) (Water Hammer Unit Weight of Fluid) \(\large{ \alpha = \frac{ 144\; p_{sf} \; g }{ \gamma_f \; \Delta v } }\) \(\large{ 144 = \frac{ \gamma_f \; \alpha \; \Delta v }{ p_{sf} \; \Delta v } }\) \(\large{ p_{sf} = \frac{ \gamma_f \; \alpha \; \Delta v }{144 \; g } }\) \(\large{ g = \frac{ \gamma_f \; \alpha \; \Delta v }{ 144 \; p_{sf} } }\) \(\large{ \Delta v = \frac{ 144\; p_{sf} \; g }{ \gamma_f \; \alpha } }\) |
||
Symbol | English | Metric |
\(\large{ \gamma_f } \) (Greek symbol gamma) = unit weight of fluid | \(\large{\frac{lbm}{ft^3}}\) | \(\large{\frac{N}{m^3}}\) |
\(\large{ \alpha }\) (Greek symbol alpha) = pressure wave velocity | \(\large{\frac{ft}{sec}}\) | \(\large{\frac{m}{s}}\) |
\(\large{ \Delta v }\) = fluid velocity change | \(\large{\frac{ft}{sec}}\) | \(\large{\frac{m}{s}}\) |
\(\large{ g }\) = gravitational acceleration | \(\large{\frac{ft}{sec^2}}\) | \(\large{\frac{m}{s^2}}\) |
\(\large{ p_{spf} }\) = maximum surge pressure for fluid | \(\large{\frac{lbf}{in^2}}\) | \(\large{Pa}\) |
Tags: Water Hammer