# Water Hammer Unit Weight of Fluid

on . Posted in Fluid Dynamics

## Water Hammer Unit Weight of Fluid Formula

$$\large{ \gamma_f = \frac{ 144\; p_{sf} \; g }{ \alpha \; \Delta v } }$$     (Water Hammer Unit Weight of Fluid)

$$\large{ \alpha = \frac{ 144\; p_{sf} \; g }{ \gamma_f \; \Delta v } }$$

$$\large{ 144 = \frac{ \gamma_f \; \alpha \; \Delta v }{ p_{sf} \; \Delta v } }$$

$$\large{ p_{sf} = \frac{ \gamma_f \; \alpha \; \Delta v }{144 \; g } }$$

$$\large{ g = \frac{ \gamma_f \; \alpha \; \Delta v }{ 144 \; p_{sf} } }$$

$$\large{ \Delta v = \frac{ 144\; p_{sf} \; g }{ \gamma_f \; \alpha } }$$

Symbol English Metric
$$\large{ \gamma_f }$$  (Greek symbol gamma) = unit weight of fluid $$\large{\frac{lbm}{ft^3}}$$ $$\large{\frac{N}{m^3}}$$
$$\large{ \alpha }$$  (Greek symbol alpha) = pressure wave velocity $$\large{\frac{ft}{sec}}$$ $$\large{\frac{m}{s}}$$
$$\large{ \Delta v }$$ = fluid velocity change $$\large{\frac{ft}{sec}}$$ $$\large{\frac{m}{s}}$$
$$\large{ g }$$ = gravitational acceleration $$\large{\frac{ft}{sec^2}}$$ $$\large{\frac{m}{s^2}}$$
$$\large{ p_{spf} }$$ = maximum surge pressure for fluid $$\large{\frac{lbf}{in^2}}$$ $$\large{Pa}$$

Tags: Water Hammer