# Water Hammer Gravitational Acceleration

on . Posted in Fluid Dynamics

## Water Hammer Gravitational Acceleration Formula

$$\large{ g = \frac { \alpha \; \Delta v } { h_{sf} } }$$     (maximum surge pressure head)

$$\large{ g = \frac{ \alpha \; \Delta v \;\gamma_f }{ 144 \;p_{sf} } }$$     (maximum surge pressure for a fluid)

$$\large{ g = \frac{ \alpha \; \Delta v}{ 2.31 \;p_{sw} } }$$     (maximum surge pressure for a water)

Symbol English Metric
$$\large{ g }$$ = gravitational acceleration $$\large{\frac{ft}{sec^2}}$$ $$\large{\frac{m}{s^2}}$$
$$\large{ \Delta v }$$ = fluid velocity change $$\large{\frac{ft}{sec}}$$ $$\large{\frac{m}{s}}$$
$$\large{ p_{sf} }$$ = maximum surge pressure for fluid $$\large{\frac{lbf}{in^2}}$$ $$\large{Pa}$$
$$\large{ p_{sw} }$$ = maximum surge pressure for water $$\large{\frac{lbf}{in^2}}$$ $$\large{Pa}$$
$$\large{ h_{sf} }$$ = maximum surge pressure head in length of fluid $$\large{\frac{lbf}{in^2}}$$ $$\large{Pa}$$
$$\large{ \alpha }$$  (Greek symbol alpha) = pressure wave velocity $$\large{\frac{ft}{sec}}$$ $$\large{\frac{m}{s}}$$
$$\large{ \gamma_f }$$  (Greek symbol gamma) = unit weight of fluid $$\large{\frac{lbm}{ft^3}}$$ $$\large{\frac{N}{m^3}}$$ Tags: Water Hammer