Water Hammer Gravitational Acceleration

Written by Jerry Ratzlaff on . Posted in Fluid Dynamics

Water Hammer Gravitational Acceleration Formula

\(\large{  g  =  \frac {  \alpha \; \Delta v  }   { h_{sf}  }   }\)  (maximum surge pressure head)
\(\large{  g  =  \frac{ \alpha \; \Delta v \;\gamma_f }{ 144 \;p_{sf} }   }\) (maximum surge pressure for a fluid)
\(\large{  g  =  \frac{ \alpha \; \Delta v}{ 2.31 \;p_{sw} }   }\) (maximum surge pressure for a water)

Where:

 Units English Metric
\(\large{ g }\) = gravitational acceleration \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\)
\(\large{ \Delta v }\) = fluid velocity change \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)
\(\large{ p_{sf} }\) = maximum surge pressure for fluid \(\large{\frac{lbf}{in^2}}\) \(\large{Pa}\)
\(\large{ p_{sw} }\) = maximum surge pressure for water \(\large{\frac{lbf}{in^2}}\) \(\large{Pa}\)
\(\large{ h_{sf} }\) = maximum surge pressure head in length of fluid \(\large{\frac{lbf}{in^2}}\) \(\large{Pa}\)
\(\large{ \alpha }\)  (Greek symbol alpha) = pressure wave velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)
\(\large{  \gamma_f } \)  (Greek symbol gamma) = unit weight of fluid \(\large{\frac{lbm}{ft^3}}\) \(\large{\frac{N}{m^3}}\)

 

P D Logo 1 

Tags: Water Hammer Equations