Density of an Ideal Gas

on . Posted in Thermodynamics

Density of an ideal gas, abbreviated as \(\rho\) (Greek symbol rho), is a measure of how much mass is contained in a given volume of the gas.  It is calculated using the ideal gas equation and the molar mass of the gas.  It's important to note that this formula is applicable to ideal gases, which follow the ideal gas law under certain conditions (low pressure and high temperature).  Real gases deviate from ideal behavior at high pressures and low temperatures.  When dealing with real gases, corrections such as the Van der Waals equation may be necessary to account for these deviations from ideal behavior.  

   

Density of an Ideal Gas Formula

\( \rho \;=\;  \dfrac{ M \cdot p_{atm} }{ R \cdot T_a }\)     (Density of an Ideal Gas)

\(M \;=\; \dfrac{  \rho \cdot R \cdot T }{ p_{atm} }\)

\( p_{atm} \;=\;  \dfrac{ \rho \cdot R \cdot T }{ M }\)

\( R \;=\;  \dfrac{ M \cdot p_{atm} }{ \rho \cdot T }\)

\( T_a \;=\; \dfrac{  M \cdot p_{atm} }{ \rho \cdot R }\)

Symbol English Metric
\( \rho \) (Greek symbol rho) = density of an ideal gas \(lbm \;/\; ft^3\)  \(kg \;/\; m^3\) 
\( M \) = molar gas \(ft^3\) \(m^3\)
\( p_{atm} \) = atmospheric pressure \(lbf \;/\; in^2\) \(Pa\)
\( R \) = molar gas constant \(lbf-ft \;/\; lbmol-R\) \(J \;/\; kmol-K\)
\( T_a \) = absolute temperature \(R\) \(K\)

 

P D Logo 1

Tags: Gas Density Ideal Gas