Isobaric Process - Entropy in Terms of Pressure and Volume

on . Posted in Thermodynamics

     

Isobaric Process - Entropy in Terms of Pressure and Volume Formula

\( S  =  \Delta S \; ( - n\; R ) \; [ \; ln \; ( p_f \;/\; p_i )  \; ]  \) 
Symbol English Metric
\( S \) = Entropy \(Btu \;/\; lbm-R\) \(kJ \;/\;kg-K\)
\( \Delta S \) = Entropy Change \(Btu \;/\; lbm-R\) \(kJ \;/\;kg-K\)
\( n \) = Number of Moles \(dimensionless\) \(dimensionless\)
\( R \) = Molar Gas Constant \(lbf-ft \;/\; lbmol-R\) \(J \;/\; kmol-K\)
\( ln \) = Natural Logarithm \(dimensionless\) \(dimensionless\)
\( p_f \) = Final Pressure \(lbf \;/\; in^2\) \(Pa\)
\( p_i \) = Initial Pressure \(lbf \;/\; in^2\) \(Pa\)

Isobaric process is a thermodynamic process where the pressure is kept constant, \(\Delta p = 0\).   

 

 

 

 

 

 

 

 

 

 

 

Isobaric Process - Entropy in Terms of Pressure and Volume Formula

\( S  =  \Delta S \; ( n\; R ) \; [ \; ln \; ( V_f \;/\; V_i ) \; ] \) 
Symbol English Metric
\( S \) = Entropy \(Btu \;/\; lbm-R\) \(kJ \;/\;kg-K\)
\( \Delta S \) = Entropy Change \(Btu \;/\; lbm-R\) \(kJ \;/\;kg-K\)
\( n \) = Number of Moles \(dimensionless\) \(dimensionless\)
\( R \) = Molar Gas Constant \(lbf-ft \;/\; lbmol-R\) \(J \;/\; kmol-K\)
\( ln \) = Natural Logarithm \(dimensionless\) \(dimensionless\)
\( V_f \) = Final Volume \(in^3\) \(mm^3\)
\(V_i \) = Initial Volume \(in^3\) \(mm^3\)

 

P D Logo 1 

Tags: Pressure Heat Volume Energy Constant Entropy