Ideal Gas Law with Compressibility Factor Formula |
||
\( p \cdot V \;=\; z \cdot n \cdot R \cdot T \) (Ideal Gas Law with Compressibility Factor) \( p \;=\; \dfrac{ z \cdot n \cdot R \cdot T }{ V }\) \( V \;=\; \dfrac{ z \cdot n \cdot R \cdot T }{ p }\) \( z \;=\; \dfrac{ p \cdot V }{ n \cdot R \cdot T }\) \( n \;=\; \dfrac{ p \cdot V }{ z \cdot R \cdot T }\) \( R \;=\; \dfrac{ p \cdot V }{ z \cdot n \cdot T }\) \( T \;=\; \dfrac{ p \cdot V }{ z \cdot n \cdot R }\) |
||
Symbol | English | Metric |
\( p \) = pressure of gas | \(lbf\;/\;in^2\) | \(Pa\) |
\( V \) = volume of gas | \( in^3 \) | \(\ mm^3 \) |
\( z \) = compressibility factor (1.0 is the ideal gas) | \(dimensionless\) | \(dimensionless\) |
\( n \) = number of moles of gas | \(dimensionless\) | \(dimensionless\) |
\( R \) = specific gas constant (gas constant) | \(ft-lbf\;/\;lbm-R\) | \(J\;/\;kg-K\) |
\( T \) = temperature of gas | \( F \) | \( K \) |
The ideal gas law with compressibility factor is used for higher pressure and temperature than the ideal gas law that is at atmospheric conditions.