Skip to main content

Radius of Gyration of a Half Circle

 

Radius of Gyration of a Half Circle formulas

\( k_{x} \;=\;    r \cdot  \sqrt{   \dfrac{1 }{ 4 }  -  \dfrac{ 16 }{ 9 \cdot \pi^2 }   }  \)

\( k_{y} \;=\;   \dfrac{  r }{  2 }\) 

\( k_{z} \;=\;   r \cdot \sqrt{   \dfrac{ 1 }{ 2 }  -  \dfrac{ 16 }{ 9 \cdot \pi^2 }   }  \)

\( k_{x1} \;=\;   \dfrac{  r }{  2 }\) 

\( k_{y1} \;=\;   \dfrac{ r }{  2 }\) 

\( k_{z1} \;=\;   \dfrac{ \sqrt {2}  }{  2  } \cdot r   \)

Symbol English Metric
\(\large{ k }\) = radius of gyration \( in \) \( mm \)
\(\large{ \pi }\) = Pi \(3.141 592 653 ...\) \(3.141 592 653 ...\)
\(\large{ r }\) = radius \( in \) \( mm \)

circle half 8circle 17

 

 

 

 

 

 Piping Designer Logo 1