Right Isosceles Triangle
- Right isosceles triangle (a two-dimensional figure) has one side a right 90° interior angle and the other two angles are 45°.
 - Angle bisector of a right isosceles triangle is a line that splits an angle into two equal angles.
 - Circumcircle is a circle that passes through all the vertices of a two-dimensional figure.
 - Hypotenuse of a right isosceles triangle is the longest side or the side opposite the right angle.
 - Inscribed circle is the Iargest circle possible that can fit on the inside of a two-dimensional figure.
 - Median of a right isosceles triangle is a line segment from a vertex (coiner point) to the midpoint of the opposite side.
 - Semiperimeter is one half of the perimeter.
 - Side of a right triangle is one half of the perimeter.
 - Two sides are congruent.
 - 3 edges
 - 3 vertexs
 - a = opposite leg
 - b = adjacent leg
 - c = hypotenuse
 - Angles: ∠A, ∠B, ∠C
 - Height: \(h_a\), \(h_b\), \(h_c\)
 - Median: \(m_a\), \(m_b\), \(m_c\) - A line segment from a vertex (corner point) to the midpoint of the opposite side
 - Angle bisectors: \(t_a\), \(t_b\), \(t_c\) - A line that splits an angle into two equal angles
 
Angle bisector of a Right Isosceles Triangle formulas | 
||
| 
 \( t_a \;=\; 2 \cdot b \cdot c \cdot cos\left( \dfrac{ \dfrac{A}{2} }{ b + c } \right) \) \( t_a \;=\; \sqrt{ b \cdot c \cdot \dfrac{ 1 - a^2 }{ \left( b + c \right)^2 } } \) \( t_b \;=\; 2 \cdot a \cdot c \cdot cos\left( \dfrac{ \dfrac{B}{2} }{ a + c } \right) \) \( t_b \;=\; \sqrt{ a \cdot c \cdot \dfrac{ 1 - b^2 }{ \left( a + c \right)^2 } } \) \( t_c \;=\; a \cdot b \cdot \sqrt{ \dfrac{ 2 }{ a + b } } \)  | 
||
| Symbol | English | Metric | 
| \( t_a, t_b, t_c \) = angle bisector | \( in \) | \( mm \) | 
| \( A, B, C \) = angle | \( deg \) | \( rad \) | 
| \( a, b, c \) = edge | \( in \) | \( mm \) | 
Area of a Right Isosceles Triangle formulas | 
||
| 
 \( A_{area} \;=\; \dfrac{ h \cdot b }{2} \) \( A_{area} \;=\; \dfrac{1}{2} \cdot b \cdot h \) \( A_{area} \;=\; a \cdot b \cdot \dfrac{ sin( y) }{ 2 } \)  | 
||
| Symbol | English | Metric | 
| \( A_{area} \) = area | \( in^2 \) | \( mm^2 \) | 
| \( a, b, c \) = edge | \( in \) | \( mm \) | 
| \( h \) = height | \( in \) | \( mm \) | 
Circumcircle of a Right Iosceles Triangle formulas | 
||
| 
 \( R \;=\; \dfrac{ 1 }{ 2 } \cdot \sqrt{ a^2 + b^2 } \) \( R \;=\; \dfrac{ H }{ 2 } \)  | 
||
| Symbol | English | Metric | 
| \( R \) = outcircle | \( in \) | \( mm \) | 
| \( a, b, c \) = edge | \( in \) | \( mm \) | 
| \( H \) = hypotenuse | \( in \) | \( mm \) | 
Height of a Right Isosceles Triangle formula | 
||
| \( h_c \;=\; 2 \cdot \dfrac{ A_{area} }{ b } \) | ||
| Symbol | English | Metric | 
| \( h^c \) = height | \( in \) | \( mm \) | 
| \( A_{area} \) = area | \( in^2 \) | \( mm^2 \) | 
| \( a, b, c \) = edge | \( in \) | \( mm \) | 
Inscribed Circle of a Right Isosceles Triangle formula | 
||
| \( r \;=\; \dfrac{ a + b - c }{ 2 } \) | ||
| Symbol | English | Metric | 
| \( r \) = incircle | \( in \) | \( mm \) | 
| \( a, b, c \) = edge | \( in \) | \( mm \) | 
Median of a Right Isosceles Triangle formulas | 
||
| 
 \( m_a \;=\; \sqrt{ \dfrac{ 4 \cdot b^2 + a^2 }{ 2 } } \) \( m_b \;=\; \sqrt{ \dfrac{ 4 \cdot a^2 + b^2 }{ 2 } } \) \( m_c \;=\; \dfrac{c }{ 2} \)  | 
||
| Symbol | English | Metric | 
| \( m_a, m_b, m_c \) = median | \( in \) | \( mm \) | 
| \( a, b, c \) = edge | \( in \) | \( mm \) | 
Perimeter of a Right Isosceles Triangle formula | 
||
| \( P \;=\; a + b + c \) | ||
| Symbol | English | Metric | 
| \( P \) = perimeter | \( in \) | \( mm \) | 
| \( a, b, c \) = edge | \( in \) | \( mm \) | 
Side of a Right Isosceles Triangle formula | 
||
| 
 \( a \;=\; P - b - c \) \( a \;=\; 2\cdot \dfrac{A_{area} }{ b \cdot sin( y) } \) \( b \;=\; P - a - c \) \( b \;=\; 2 \cdot \dfrac{A_{area} }{ h} \) \( c \;=\; P - a - b \)  | 
||
| Symbol | English | Metric | 
| \( a, b, c \) = edge | \( in \) | \( mm \) | 
| \( A_{area} \) = area | \( in^2 \) | \( mm^2 \) | 
| \( P \) = perimeter | \( in \) | \( mm \) | 
Trig Functions | 
||
Find A
  | 
||
Find B
  | 
||
 Find a
  | 
||
Find b
  | 
||
Find c
  | 
||
Find Area
  | 




