Skip to main content

Average Velocity Change in Velocity

 

Average Velocity Change in Velocity Formulas

\( \bar {v} \;=\;  \dfrac{ v_t }{ t_t }\) 

\( \bar {v}  \;=\;  \dfrac{ v_1 + v_2 + v_3 ... v_n }{ t_1 + t_2 + t_3 ... t_n }\) 

Symbol English Metric
\( \bar {v}  \) = average of velocity \(ft \;/\;sec\) \(m \;/\; s\)
\( t  \) = time \( sec \) \( s \)
\( t_t  \) = total time \( sec \) \( s \)
\( v_t  \) = total velocity \(ft \;/\;sec\) \(m \;/\; s\)
\( v  \) = velocity \(ft \;/\;sec\) \(m \;/\; s\)

When an object make changes in its velocity at different times that is an average velocity of any given velocities. 

Piping Designer Logo 1