Average Velocity Change in Velocity Formulas |
||
\( \bar {v} \;=\; \dfrac{ v_t }{ t_t }\) \( \bar {v} \;=\; \dfrac{ v_1 + v_2 + v_3 ... v_n }{ t_1 + t_2 + t_3 ... t_n }\) |
||
Symbol | English | Metric |
\( \bar {v} \) = average of velocity | \(ft \;/\;sec\) | \(m \;/\; s\) |
\( t \) = time | \( sec \) | \( s \) |
\( t_t \) = total time | \( sec \) | \( s \) |
\( v_t \) = total velocity | \(ft \;/\;sec\) | \(m \;/\; s\) |
\( v \) = velocity | \(ft \;/\;sec\) | \(m \;/\; s\) |
When an object make changes in its velocity at different times that is an average velocity of any given velocities.