Steam Economical Insulation Thickness Payback
Steam Economical Insulation Thickness Payback formula
\(\large{ C_i1 = 1000 \frac {\pi} {4} \left( \left( d +2L \right)^2 - d{^2} \right) C_i2 \; \cdot \; N + 0.001 C_e h Q_r }\)
\(\large{ N = \frac { i \left( 1 + i \right)^m } { \left( 1 + i \right)^m -1 } }\)
\(\large{ Q_r = \frac{ 2 \pi \: \left( T_s + T a m \right) } { \frac{ l }{ \lambda } \; \cdot \; i \pi \: \left( \frac{ d + 24L }{ d } \right) \; + \; \frac{24 }{ \pi \left( d + 24L\right) } } }\)
Where:
\(\large{ C_i1 }\) = annual average insulation cost
\(\large{ N }\) = rate of payback
\(\large{ Q_r }\) = radiant heat
\(\large{ T_a }\) = ambient temperature
\(\large{ i }\) = annual interest rate
\(\large{ C_e }\) = energy unit cost
\(\large{ h }\) = heat transfer coefficient
\(\large{ C_i2 }\) = insulation and labor cost
\(\large{ L }\) = insulation thickness
\(\large{ d }\) = outside diameter of pipe
\(\large{ m }\) = payback period
\(\large{ \pi }\) = Pi
\(\large{ l }\) = pipe length
\(\large{ T_s }\) = steam temperature
\(\large{ \lambda }\) (Greek symbol lambda) = thermal conductivity coefficient