Skip to main content

Simple Beam - Concentrated Load at Center

Simple Beam - Concentrated Load at Center formulas

R \;=\; V \;=\;  \dfrac{ P }{ 2 }

M_{max} \; (at\; point \;of\; load ) \;=\; \dfrac{ P \cdot L }{ 4 } 

M_x   \; [\; x < (L\;/\;2) \;] \;=\;  \dfrac{ P \cdot x }{ 2 }

\Delta_{max} \; (at \;point\; of\; load ) \;=\;  \dfrac{ P \cdot L^3 }{ 48 \cdot \lambda\cdot I }

\Delta_x  \; (  x < \frac{L}{2} )  \;=\; \dfrac{ P \cdot x }{ 48 \cdot \lambda \cdot I } \cdot (  3 \cdot L^2 - 4 \cdot x^2 ) 

Symbol English Metric
R = reaction load at bearing point lbf N
V = maximum shear force lbf N
M = maximum bending moment lbf-in N-mm
\Delta = deflection or deformation in mm
P = total concentrated load lbf N
L = span length of the bending member in mm
x = horizontal distance from reaction to point on beam in mm
\lambda   (Greek symbol lambda) = modulus of elasticity lbf\;/\;in^2 Pa
I = second moment of area (moment of inertia) in^4 mm^4

sb 7D 1 

 

 

 

 

 

 

 

Diagram Symbols

Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

Piping Designer Logo Slide 1