Cylindrical Capacitor Formula |
||
\( C \;=\; \dfrac{ 2 \cdot \pi \cdot \epsilon \cdot L }{ ln \left( \frac{ b }{ a } \right) }\) (Cylindrical Capacitor) \( \epsilon \;=\; \dfrac{ C \cdot ln \left( \frac{ b }{ a } \right) }{ 2 \cdot \pi \cdot L }\) \( L \;=\; \dfrac{ C \cdot ln \left( \frac{ b }{ a } \right) }{ 2 \cdot \pi \cdot \epsilon }\) \( b \;=\; a \cdot \epsilon^{ \left( \dfrac{ 2 \cdot \pi \cdot L }{ C } \right) }\) \( a \;=\; \dfrac{ b }{ \epsilon^{ \left( \dfrac{ 2 \cdot \pi \cdot L }{ C } \right) } }\) |
||
Symbol | English | Metric |
\( C \) = Capacitance | - | \(s^4-A^2\;/\;kg-m^2\) |
\( \pi \) = Pi | - | \(3.141 592 653 ...\) |
\(\epsilon \) (Greek symbol epsilon) = Permittivity | - | \(F \;/\; m\) |
\( L \) = Capacitor Length | - | \(mm\) |
\( a \) = Capacitor OD | - | \(mm\) |
\( b \) = Capacitor ID | - | \(mm\) |
Cylindrical capacitor is a type of capacitor constructed with two coaxial cylindrical conductors separated by a dielectric material. Typically, one cylinder is solid or hollow and resides concentrically within a larger hollow cylindrical shell. When a voltage is applied across these conductors, an electric field forms in the dielectric, allowing the device to store electrical energy. The cylindrical geometry offers a specific configuration of electric field lines, contributing to efficient energy storage and making these capacitors suitable for applications where space efficiency and substantial capacitance are desired.