Skip to main content

 

Noise Factor formula

\(  F \;=\;   \dfrac{ SNR_{in}  }{  SNR_{out}  }   \)     (Noise Factor)

\(  SNR_{in}  \;=\;   F  \cdot  SNR_{out}   \)

\(  SNR_{out}  \;=\;   \dfrac{ SNR_{in}  }{  F  }   \)

Symbol English Metric
\( F \) = Noise Factor \(dimensionless\) \(dimensionless\)
\( SNR_{in} \) = Signal-to-noise Ratio In \(dB\) \(dB\)
\( SNR_{out} \) = Signal-to-noise Ratio Out \(dB\) \(dB\)

Noise factor, abbreviated as \(F\), is a measure of how much a device, such as an amplifier or receiver, degrades the signal-to-noise ratio as a signal passes through it.  It quantifies the additional noise introduced by the device compared to an ideal, noiseless system.  A lower noise factor indicates better performance, meaning the device adds less noise to the signal.  This concept is crucial in communication and electronic systems design because minimizing noise is essential for maintaining signal clarity and improving overall system sensitivity. 

Piping Designer Logo 1 

  

Noise Factor formula

\(  F \;=\;   \dfrac{  \dfrac{ S_{in} }{ N_{in} }  }{  \dfrac{ S_{out} }{ N_{out} }  }   \)
Symbol English Metric
\( F \) = Noise Factor \(dimensionless\) \(dimensionless\)
\( S_{in} \) = Signal Leval Input \(dB\) \(dB\)
\( N_{in} \) = Noise Leval Input \(dB\)  \(dB\) 
\( S_{out} \) = Signal Leval Output \(dB\) \(dB\)
\( N_{out} \) = Noise Leval Output \(dB\)   \(dB\)