Radial Displacement Spherical (Volume)
Radial Displacement Spherical (Volume) Formula |
||
| \( V \;=\; \dfrac{ (2 \cdot p \cdot \pi \cdot r^4 ) \cdot ( 1 - \mu ) }{ \lambda \cdot t } \) | ||
| Symbol | English | Metric |
| \( V \) = Volume | \( in^3 \) | \( mm^3 \) |
| \( p \) = Pressure Under Consideration | \(lbf\;/\;in^2\) | \(Pa\) |
| \( \pi \) = Pi | \(3.141 592 653 ...\) | \(3.141 592 653 ...\) |
| \( r \) = Radius to Point of Intrest | \( in \) | \( mm \) |
| \( \mu \) (Greek symbol mu) = Poisson's Ratio | \( dimensionless \) | \( dimensionless \) |
| \( \lambda \) (Greek symbol lambda) = Elastic Modulus | \(lbf\;/\;in^2\) | \(Pa\) |
| \( t \) = Wall Thickness | \( in \) | \( mm \) |

Similar Articles
- Longitudinal Hoop Stress Thick-walled Section (Internal & External Pressure)
- Spherical Hoop Stress Thin-wall Section
- Longitudinal Hoop Stress Thick-walled Section (Internal Pressure Only)
- Radial Displacement Thin-wall Section (Internal Pressure Only)
- Spherical Hoop Stress Thick-walled Section (Internal & External Pressure)
