Two Span Continuous Beam - Equal Spans, Concentrated Load at Any Point

on . Posted in Structural Engineering

cb3s 6A

diagram Symbols

  • Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
  • Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

 

 

 

 

Two Span Continuous Beam - Equal Spans, Two Equal Concentrated Loads Symmetrically Placed  formulas

\( R_1 \;=\; V_1  \;=\; (P\;b\;/\;4\;L^3) \; [\; 4\;L^2 - a \; ( L + a ) \;]  \) 

\( R_2   \;=\; (P\;a\;/\;2\;L^3) \; [\; 2\;L^2 + b \; ( L + a ) \;]  \) 

\( R_3 \;=\; V_3   \;=\;  [\; -\; (P\;a\;b\;/\;4\;L^3 )\;] \; ( L + a )    \) 

\( V_2   \;=\; (P\;a\;/\;4\;L^3) \; [\; 4\;L^2 + b \; ( L + a ) \;]  \)

\( M_1  \; \left(at\; support\; R_2  \right)  \;=\; (P\;a\;b\;/\;4\;L^2)  \; ( L + a )   \)

\( M_{max}   \;=\; (P\;a\;b\;/\;4\;L^3)  \; [\; 4\;L^2 - a \; ( L + a ) \;]  \)

Symbol English Metric
\( a, b \) = horizontal distance to point load \(in\) \(mm\)
\( M \) = maximum bending moment \(lbf-in\) \(N-mm\)
\( V \) = maximum shear force \(lbf\) \(N\)
\( R \) = reaction load at bearing point \(lbf\) \(N\)
\( L \) = span length under consideration \(in\) \(mm\)
\( P \) = total consideration load \(lbf\) \(N\)

 

Piping Designer Logo 1

Tags: Beam Support