Two Span Continuous Beam - Equal Spans, Concentrated Load at Any Point
- See Article Link - Beam Design Formulas
- Tags: Beam Support
diagram Symbols
- Bending moment diagram (BMD) - Used to determine the bending moment at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Free body diagram (FBD) - Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
- Shear force diagram (SFD) - Used to determine the shear force at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Uniformly distributed load (UDL) - A load that is distributed evenly across the entire length of the support area.
Two Span Continuous Beam - Equal Spans, Two Equal Concentrated Loads Symmetrically Placed formulas |
||
\( R_1 \;=\; V_1 \;=\; (P\;b\;/\;4\;L^3) \; [\; 4\;L^2 - a \; ( L + a ) \;] \) \( R_2 \;=\; (P\;a\;/\;2\;L^3) \; [\; 2\;L^2 + b \; ( L + a ) \;] \) \( R_3 \;=\; V_3 \;=\; [\; -\; (P\;a\;b\;/\;4\;L^3 )\;] \; ( L + a ) \) \( V_2 \;=\; (P\;a\;/\;4\;L^3) \; [\; 4\;L^2 + b \; ( L + a ) \;] \) \( M_1 \; \left(at\; support\; R_2 \right) \;=\; (P\;a\;b\;/\;4\;L^2) \; ( L + a ) \) \( M_{max} \;=\; (P\;a\;b\;/\;4\;L^3) \; [\; 4\;L^2 - a \; ( L + a ) \;] \) |
||
Symbol | English | Metric |
\( a, b \) = horizontal distance to point load | \(in\) | \(mm\) |
\( M \) = maximum bending moment | \(lbf-in\) | \(N-mm\) |
\( V \) = maximum shear force | \(lbf\) | \(N\) |
\( R \) = reaction load at bearing point | \(lbf\) | \(N\) |
\( L \) = span length under consideration | \(in\) | \(mm\) |
\( P \) = total consideration load | \(lbf\) | \(N\) |
Tags: Beam Support