Skip to main content

Beam Fixed at One End - Uniformly Distributed Load

Diagram Symbols

Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

 

feoe 1A

Beam Fixed at One End - Uniformly Distributed Load formulas

\( R_1 \;=\; V_1 \;=\; \dfrac{ 3\cdot w \cdot L }{ 8 } \) 

\( R_2 \;=\; V_2 max \;=\; \dfrac{ 5\cdot w\cdot L }{ 8  }\) 

\( V_x \;=\;   R_1 - w \cdot x  \) 

\( M_{max}   \;=\;   \dfrac{ w\cdot L^2 }{ 8 } \)

\( M_1 \; \left(at\; x  = \frac {3\;L}{8}  \right)  \;=\;  \dfrac{ 9\cdot w\cdot L^2 }{ 128 }  \)

\( M_x   \;=\;    (R_1\cdot x) -  \dfrac{ w\cdot x^2 }{ 2} \)

\( \Delta_{max}  \;=\; [\; at \; x = \frac{L}{16}\; ( 1 + \sqrt{33} \;) \;or\; x = 0.4215\;L \;]  \;=\;  \dfrac{ w\cdot L^4 }{ 185\cdot \lambda\cdot I } \)

\( \Delta_x \;=\;    \dfrac{ w \cdot x }{ 48\cdot \lambda\cdot I  }  \cdot  (  L^3 - 3 \cdot L \cdot x^2 + 2 \cdot x^3 )  \)

Symbol English Metric
\( R \) = reaction load at bearing point \(lbf\) \(N\)
\( V \) = maximum shear force \(lbf\) \(N\)
\( M \) = maximum bending moment \(lbf-in\) \(N-mm\)
\( \Delta \) = deflection or deformation \(in\) \(mm\)
\( w \) = load per unit length \(lbf\;/\;in\) \(N\;/\;m\)
\( L \) = span length of the bending member \(in\) \(mm\)
\( x \) = horizontal distance from reaction to point on beam \(in\) \(mm\)
\( \lambda  \)   (Greek symbol lambda) = modulus of elasticity \(lbf\;/\;in^2\) \(Pa\)
\( I \) = second moment of area (moment of inertia) \(in^4\) \(mm^4\)

 

Piping Designer Logo Slide 1