Tapered Channel

on . Posted in Structural Engineering

C tapered 1ATapered channel, also called tapered C-channel or tapered U-channel, is a type of structural steel member with a cross-sectional shape resembling the letter "C" or "U" that gradually changes dimensions along its length.  Unlike a standard C-channel or U-channel, where the sides are parallel and of constant dimensions, a tapered channel has sides that converge or diverge, resulting in a non-uniform cross-section.  Tapered channels are used in situations where the structural requirements, load distribution, or other engineering considerations change along the length of the member.  The tapering can be gradual or more pronounced, depending on the specific needs of the project.

Tapered Channel Index

 

area of a Tapered Channel formula

\(\large{ A =  l\;t  +  a \; \left( s  +  n  \right)  }\)
Symbol English Metric
\(\large{ A }\) = area \(\large{ in^2 }\) \(\large{ mm^2 }\)
\(\large{ l }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ n }\) = thickness \(\large{ in }\) \(\large{ mm }\)
\(\large{ s }\) = thickness \(\large{ in }\) \(\large{ mm }\)
\(\large{ t }\) = thickness \(\large{ in }\) \(\large{ mm }\)
\(\large{ a }\) = width \(\large{ in }\) \(\large{ mm }\)

 

Distance from Centroid of a Tapered Channel formulas

\(\large{ C_x =  \frac{1}{3}  \;  \left[   w^2 \;s  +  \frac{h\;t^2}{2}   \;-\;  \frac{\frac{h \;-\; L}{2\;\left(w \;-\; t \right) } }{3}  \; \left( w + 2\;t  \right)  \left( w - t \right)^2 \right]   }\)

\(\large{ C_y =  \frac{l}{2}  }\)

Symbol English Metric
\(\large{ C }\) = distance from centroid \(\large{ in }\) \(\large{ mm }\)
\(\large{ h }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ l }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ L }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ s }\) = thickness \(\large{ in }\) \(\large{ mm }\)
\(\large{ t }\) = thickness \(\large{ in }\) \(\large{ mm }\)
\(\large{ w }\) = width \(\large{ in }\) \(\large{ mm }\)

 

Elastic Section Modulus of a Tapered Channel formulas

\(\large{ S_x =  \frac{ I_x }{ C_y   }  }\) 

\(\large{ S_y =  \frac{ I_y }{ C_x   }  }\) 

Symbol English Metric
\(\large{ S }\) = elastic section modulus \(\large{ in^3 }\) \(\large{ mm^3 }\)
\(\large{ C }\) = distance from centroid \(\large{ in }\) \(\large{ mm }\)
\(\large{ I }\) = moment of inertia \(\large{ in^4 }\) \(\large{ mm^4 }\)

 

Perimeter of a Tapered Channel formula

\(\large{ P =  2\;a^2  +  2\;w  +  2\;h -  2\;L^2  +  L  +  2\;s   }\) 
Symbol English Metric
\(\large{ P }\) = perimeter \(\large{ in }\) \(\large{ mm }\)
\(\large{ h }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ L }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ s }\) = thickness \(\large{ in }\) \(\large{ mm }\)
\(\large{ a }\) = width \(\large{ in }\) \(\large{ mm }\)
\(\large{ w }\) = width \(\large{ in }\) \(\large{ mm }\)

 

Polar Moment of Inertia of a Tapered Channel formulas

\(\large{ J_z =  I_x  +  I_y }\) 

\(\large{ J_{z1} =  I_{x1}  +  I_{y1} }\) 

Symbol English Metric
\(\large{ J }\) = torsional constant \(\large{ in^4 }\) \(\large{ mm^4 }\)
\(\large{ I }\) = moment of inertia \(\large{ in^4 }\) \(\large{ mm^4 }\)

 

Radius of Gyration of a Tapered Channel formulas

\(\large{ k_x =   \sqrt{   \frac{  \frac{1}{12}   \; \left[ w\;l^3  \;+\;  \frac{1}{8\;\frac{h \;-\; L}{2\;\left(w \;-\; t \right)}}   \; \left( h^4 \;-\; L^4  \right)   \right]   }{ lt  \;+\;  a \;\left( s  \;+\;  n  \right) }   }   }\) 

\(\large{ k_y =   \sqrt{   \frac{  \frac{1}{3} \; \left[ 2\;s\;w^3\; L\;t^3  \;+\;  \frac{\frac{h \;-\; L}{2\;\left(w \;-\; t \right)}}{2}   \; \left( w^4 \;-\; t^4  \right)   \right] \;-\; A \; \left( w \;-\; y  \right)^2  }{  l\;t  \;+\;  a\; \left( s  \;+\;  n  \right) }   }   }\) 

\(\large{ k_z =   \sqrt{   k_{x}{^2}   +    k_{y}{^2}    } }\)

\(\large{ k_{x1} =   \sqrt{    \frac{ I_{x1} }{A}    } }\)

\(\large{ k_{y1} =   \sqrt{    \frac{ I_{y1} }{A}    } }\)

\(\large{ k_{z1} =   \sqrt{   k_{x1}{^2}  +  k_{y1}{^2}     }  }\)

Symbol English Metric
\(\large{ k }\) = radius of gyration \(\large{ in }\) \(\large{ mm }\)
\(\large{ h }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ l }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ L }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ s }\) = thickness \(\large{ in }\) \(\large{ mm }\)
\(\large{ t }\) = thickness \(\large{ in }\) \(\large{ mm }\)
\(\large{ a }\) = width \(\large{ in }\) \(\large{ mm }\)
\(\large{ w }\) = width \(\large{ in }\) \(\large{ mm }\)

 

Second Moment of Area of a Tapered Channel formulas

\(\large{ I_x =  \frac{1}{12}   \;    \left[  w\;l^3  +  \frac{1}{8\;\frac{h \;-\; L}{2\;\left(w \;-\; t \right) }} \; \left( h^4 \;-\; L^4  \right)  \right]     }\) 

\(\large{ I_y =  \frac{1}{3}  \;   \left[  2\;s\;w^3  +  L\;t^3  +  \frac{\frac{h \;-\; L}{2\;\left(w \;-\; t \right) }}{2} \; \left( w^4 \;-\; t^4  \right)  \right]    \;-\; A  \left( w \;-\; y  \right)^2          }\)

\(\large{ I_{x1} =   l_x  +  A\;C_y }\) 

\(\large{ I_{y1} =  l_y  +  A\;C_x  }\)
Symbol English Metric
\(\large{ I }\) = moment of inertia \(\large{ in^4 }\)  \(\large{ mm^4 }\) 
\(\large{ A }\) = area  \(\large{ in^2 }\) \(\large{ mm^2 }\) 
\(\large{ C }\) = distance from centroid \(\large{ in }\) \(\large{ mm }\)
\(\large{ h }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ l }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ L }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ s }\) = thickness \(\large{ in }\) \(\large{ mm }\)
\(\large{ t }\) = thickness \(\large{ in }\) \(\large{ mm }\)
\(\large{ w }\) = width \(\large{ in }\) \(\large{ mm }\)

 

Torsional Constant of a Tapered Channel formula

\(\large{ J  =   \frac{  2  \;  \left( w \;-\;  \frac {t}{2}  \right)  \; n^3 \; \left( l \;-\; n  \right) \; t^3  }{3}  }\) 
Symbol English Metric
\(\large{ J }\) = torsional constant \(\large{ in^4 }\) \(\large{ mm^4 }\) 
\(\large{ l }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ n }\) = thickness \(\large{ in }\) \(\large{ mm }\)
\(\large{ s }\) = thickness \(\large{ in }\) \(\large{ mm }\)
\(\large{ t }\) = thickness \(\large{ in }\) \(\large{ mm }\)
\(\large{ w }\) = width \(\large{ in }\) \(\large{ mm }\)

 

Piping Designer Logo 1

Tags: Structural Steel