Skip to main content

Square Channel

C square 1A square channel, also called square C-channel or square U-channel, is a type of structural steel member with a cross-sectional shape resembling the letter "C" or "U."  In the case of a square channel, the cross-sectional shape is square rather than the more common rectangular shape of a standard C-channel or U-channel.  It has four equal length sides forming a square, and one side of the square is open.

Square channels are often used in construction and engineering applications where a combination of torsional resistance, load-bearing capacity, and ease of connection is required.  The open side of the square channel provides a convenient space for attaching other structural components, fasteners, or fixtures.

 

area of a Square Channel formula

\( A \;=\;  w\cdot l - h \cdot \left( w - t  \right)  \)
Symbol English Metric
\( A \) = area \(\large{ in^2 }\) \(\large{ mm^2 }\)
\( h \) = height \(\large{ in }\) \(\large{ mm }\)
\( l \) = height \(\large{ in }\) \(\large{ mm }\)
\( t \) = thickness \(\large{ in }\) \(\large{ mm }\)
\( w \) = width \(\large{ in }\) \(\large{ mm }\)

 

Distance from Centroid of a Square Channel formulas

\( C_x \;=\;  \dfrac{ 2\cdot w^2 \cdot s + h\cdot t^2  }{ 2\cdot w\cdot l - 2\cdot h \cdot \left( w - t  \right)  }  \)

\( C_y \;=\;  \dfrac{ l  }{ 2}  \)

Symbol English Metric
\( C \) = distance from centroid \(\large{ in }\) \(\large{ mm }\)
\( h \) = height \(\large{ in }\) \(\large{ mm }\)
\( l \) = height \(\large{ in }\) \(\large{ mm }\)
\( s \) = thickness \(\large{ in }\) \(\large{ mm }\)
\( t \) = thickness \(\large{ in }\) \(\large{ mm }\)
\( w \) = width \(\large{ in }\) \(\large{ mm }\)

 

Elastic Section Modulus of a Square Channel formulas

\( S_{x} \;=\;  \dfrac{ I_{x} }{ C_{y}   } \) 

\( S_{y} \;=\;  \dfrac{ I_{y} }{ C_{x}   } \) 

Symbol English Metric
\( S \) = elastic section modulus \(\large{ in^3 }\) \(\large{ mm^3 }\)
\( C \) = distance from centroid \(\large{ in }\) \(\large{ mm }\)
\( I \) = moment of inertia \(\large{ in^4 }\) \(\large{ mm^4 }\)

 

Perimeter of a Square Channel formula

\( P \;=\;  2 \cdot \left( 2\cdot w + l  \right)  - 2\cdot t  \) 
Symbol English Metric
\( P \) = perimeter \(\large{ in }\) \(\large{ mm }\)
\( l \) = height \(\large{ in }\) \(\large{ mm }\)
\( s \) = thickness \(\large{ in }\) \(\large{ mm }\)
\( t \) = thickness \(\large{ in }\) \(\large{ mm }\)
\( w \) = width \(\large{ in }\) \(\large{ mm }\)

 

Polar Moment of Inertia of a Square Channel formulas

\( J_{z} \;=\;  I_{x}  +  I_{y} \) 

\( J_{z1} \;=\;  I_{x1}  +  I_{y1} \) 

Symbol English Metric
\( J \) = torsional constant \(\large{ in^4 }\) \(\large{ mm^4 }\)
\( I \) = moment of inertia \(\large{ in^4 }\) \(\large{ mm^4 }\)

 

Radius of Gyration of a Square Channel formulas

\( k_{x} \;=\;  \sqrt{  \dfrac{ w\cdot l^3 - h^3 \cdot \left( w - t  \right) }{ 12 \cdot \left[  w\cdot l - h \cdot \left( w - t  \right)   \right]  }   }   \) 

\( k_{y} \;=\;  \sqrt{  \dfrac{ I_{y} }{ A  }   }   \) 

\( k_{z} \;=\;  \sqrt{  k_{x}{^2} + k_{y}{^2}    }  \) 

\( k_{x1} \;=\;  \sqrt{  \dfrac{ I_{x1} }{ A  }   }   \)

\( k_{y1} \;=\;  \sqrt{  \dfrac{ I_{y1} }{ A  }   }   \)

\( k_{z1} \;=\;  \sqrt{  k_{x1}{^2} + k_{y1}{^2}    }  \)

Symbol English Metric
\( k \) = radius of gyration \(\large{ in }\) \(\large{ mm }\)
\( A \) = area \(\large{ in^2 }\) \(\large{ mm^2 }\)
\( h \) = height \(\large{ in }\) \(\large{ mm }\)
\( l \) = height \(\large{ in }\) \(\large{ mm }\)
\( I \) = moment of inertia \(\large{ in^4 }\) \(\large{ mm^4 }\)
\( t \) = thickness \(\large{ in }\) \(\large{ mm }\)
\( w \) = width \(\large{ in }\) \(\large{ mm }\)

 

Second Moment of Area of a Square Channel formulas

\( I_{x} \;=\;  \dfrac{ w\cdot l^3 - h^3 \cdot \left( w - t  \right) }{ 12 }  \)

\( I_{y} \;=\;  \dfrac{ 2\cdot s\cdot w^3 + h\cdot t^3 }{ 3 } - A\cdot C_{x}{^2} \) 

\( I_{x1} \;=\;  I_{x}  +  A\cdot C_{y}{^2} \) 

\( I_{y1} \;=\;  I_{y}  +  A\cdot C_{x}{^2} \)

Symbol English Metric
\( I \) = moment of inertia \(\large{ in^4 }\) \(\large{ mm^4 }\)
\( A \) = area \(\large{ in^2 }\) \(\large{ mm^2 }\)
\( C \) = distance from centroid \(\large{ in }\) \(\large{ mm }\)
\( h \) = height \(\large{ in }\) \(\large{ mm }\)
\( l \) = height \(\large{ in }\) \(\large{ mm }\)
\( s \) = thickness \(\large{ in }\) \(\large{ mm }\)
\( t \) = thickness \(\large{ in }\) \(\large{ mm }\)
\( w \) = width \(\large{ in }\) \(\large{ mm }\)

 

Torsional Constant of a Square Channel formula

\( J  \;=\;   \dfrac{  2 \cdot \left( w -  \dfrac{t}{2}  \right)  \cdot s^3 \cdot \left( l - s  \right) \cdot t^3  }{  3  }  \) 
Symbol English Metric
\( J \) = torsional constant \(\large{ in^4 }\) \(\large{ mm^4 }\)
\( l \) = height \(\large{ in }\) \(\large{ mm }\)
\( s \) = thickness \(\large{ in }\) \(\large{ mm }\)
\( t \) = thickness \(\large{ in }\) \(\large{ mm }\)
\( w \) = width \(\large{ in }\) \(\large{ mm }\)

 

Piping Designer Logo 1