Plate Uniformly Distributed Load - Supported On All Edges
Plate Uniformly Distributed Load - Supported On All Edges Formula
\(\large{ M_A = \alpha_a \; w\; a\; b }\)
\(\large{ M_B = \alpha_b \; w\; a\; b }\)
\(\large{ \Delta_{max} }\) (at center) \(\large{ = \frac{ 0.142 \;w\;a^4 }{ \lambda\;t^3 \left( 2.21 \; \left( \frac{a}{b} \right)^2 \;+\;1 \right) } }\)
\(\large{ \sigma_{max} }\) (at center) \(\large{= \frac{ 0.75 \;w\;a^2 }{ t^2 \left( 1.61 \; \left( \frac{a}{b} \right)^3 \;+\;1 \right) } }\)
\(\large{ M_a^\mu = \frac{ \left(1\;-\;\mu\;\mu_r \right) \;M_a \;+\; \left(\mu\;-\;\mu_r \right) \;M_b}{ 1\;-\; \mu_r^2} }\)
\(\large{ M_b^\mu = \frac{ \left(1\;-\;\mu\;\mu_r \right) \;M_b \;+\; \left(\mu\;-\;\mu_r \right) \;M_a}{ 1\;-\; \mu_r^2} }\)
Where:
\(\large{ \Delta }\) = deflection or deformation
\(\large{ \alpha_a, \alpha_b }\) (Greek aymbol alpha) = length to width ratio coefficient
\(\large{ \omega }\) (Greek symbol omega) = load per unit area
\(\large{ b }\) = longest span length
\(\large{ M }\) = maximum bending moment
\(\large{ \sigma }\) (Greek symbol sigma) = maximum stress
\(\large{ \lambda }\) (Greek symbol lambda) = modulus of elasticity
\(\large{ t }\) = plate thickness
\(\large{ \mu }\) (Greek symbol mu) = Poisson's ratio of plate material
\(\large{ a }\) = shortest span length
\(\frac{b}{a}\) | \(\alpha_a\) | \(\alpha_b\) |
---|---|---|
1.0 | 0.0363 | 0.0365 |
1.1 | 0.0399 | 0.0330 |
1.2 | 0.0428 | 0.0298 |
1.3 | 0.0452 | 0.0268 |
1.4 | 0.0469 | 0.0240 |
1.5 | 0.0480 | 0.0214 |
1.6 | 0.0485 | 0.0189 |
1.7 | 0.0488 | 0.0169 |
1.8 | 0.0485 | 0.0148 |
1.9 | 0.0480 | 0.0133 |
2.0 | 0.0473 | 0.0118 |
Tags: Plate Support