# Bar to Plate Welds

on . Posted in Welding Engineering

## Applied Force on PJP Fillet Weld formulas

$$\large{ \tau = \frac{ 0.707\; F_a}{h\;l} }$$

$$\large{ \sigma = \frac{4.24\; F_a \;L}{h\;l} }$$

Symbol English Metric
$$\large{ \tau }$$ (Greak symbol tau) = shear stress  $$\large{\frac{lbf}{in^2}}$$ $$\large{Pa}$$
$$\large{ \sigma }$$ (Greek symbol sigma) = stress in weld  $$\large{\frac{lbf}{in^2}}$$ $$\large{Pa}$$
$$\large{ F_a }$$ = total applied force $$\large{ lbf }$$ $$\large{N}$$
$$\large{ h }$$ = plate thickness $$\large{ in }$$ $$\large{ mm }$$
$$\large{ l }$$ = length of weld $$\large{ in }$$ $$\large{ mm }$$
$$\large{ L }$$ = length of bar $$\large{ in }$$ $$\large{ mm }$$

## Applied Force on CJP Fillet Weld formulas

$$\large{ \tau = \frac{F_a}{2 \;h\;l} }$$

$$\large{ \sigma = \frac{3\; F_a\; L}{h\;l^2} }$$

Symbol English Metric
$$\large{ \tau }$$ (Greak symbol tau) = shear stress  $$\large{\frac{lbf}{in^2}}$$ $$\large{Pa}$$
$$\large{ \sigma }$$ (Greek symbol sigma) = stress in weld  $$\large{\frac{lbf}{in^2}}$$ $$\large{Pa}$$
$$\large{ F_a }$$ = total applied force $$\large{ lbf }$$ $$\large{N}$$
$$\large{ h }$$ = plate thickness $$\large{ in }$$ $$\large{ mm }$$
$$\large{ l }$$ = length of weld $$\large{ in }$$ $$\large{ mm }$$
$$\large{ L }$$ = length of bar $$\large{ in }$$ $$\large{ mm }$$

## Bending Moment on PJP Fillet Weld formula

$$\large{ \sigma = \frac{4.24\;M}{h\;l^2 } }$$
Symbol English Metric
$$\large{ \sigma }$$ (Greek symbol sigma) = stress in weld  $$\large{\frac{lbf}{in^2}}$$ $$\large{Pa}$$
$$\large{ M }$$ = bending moment $$\large{lbf-in}$$ $$\large{N-mm}$$
$$\large{ h }$$ = plate thickness $$\large{ in }$$ $$\large{ mm }$$
$$\large{ l }$$ = length of weld $$\large{ in }$$ $$\large{ mm }$$

## Bending Moment on CJP Fillet Weld formula

$$\large{ \sigma = \frac{3\;M}{h\;l^2 } }$$
Symbol English Metric
$$\large{ \sigma }$$ (Greek symbol sigma) = stress in weld  $$\large{\frac{lbf}{in^2}}$$ $$\large{Pa}$$
$$\large{ M }$$ = bending moment $$\large{lbf-in}$$ $$\large{N-mm}$$
$$\large{ h }$$ = plate thickness $$\large{ in }$$ $$\large{ mm }$$
$$\large{ l }$$ = length of weld $$\large{ in }$$ $$\large{ mm }$$

## Bending Moment on PJP Fillet Weld All Around formula

$$\large{ \sigma = \frac{4.24\;M}{h \;\left[ w^2 \;+ \;3\;l \; \left( w\; +\; h \right) \right] } }$$
Symbol English Metric
$$\large{ \sigma }$$ (Greek symbol sigma) = stress in weld  $$\large{\frac{lbf}{in^2}}$$ $$\large{Pa}$$
$$\large{ M }$$ = bending moment $$\large{lbf-in}$$ $$\large{N-mm}$$
$$\large{ h }$$ = weld thickness $$\large{ in }$$ $$\large{ mm }$$
$$\large{ l }$$ = length of weld $$\large{ in }$$ $$\large{ mm }$$
$$\large{ w }$$ = width of bar $$\large{ in }$$ $$\large{ mm }$$

## Torsion Moment on CJP Fillet Weld formula

$$\large{ \sigma = \frac{T}{ 2\; \left( w \;- \;h \right)\; \left( l\; -\; h \right) \;h } }$$
Symbol English Metric
$$\large{ \sigma }$$ (Greek symbol sigma) = stress in weld  $$\large{\frac{lbf}{in^2}}$$ $$\large{Pa}$$
$$\large{ T }$$ = torsion moment $$\large{lbf-in}$$ $$\large{N-mm}$$
$$\large{ h }$$ = weld throat thickness $$\large{ in }$$ $$\large{ mm }$$
$$\large{ l }$$ = length of weld $$\large{ in }$$ $$\large{ mm }$$
$$\large{ w }$$ = width of bar $$\large{ in }$$ $$\large{ mm }$$ 