Right Hexagonal Prism
Right hexagon prism (a three-dimensional figure) is where each face is a regular polygon with equal sides and equal angles.
- Long diagonal always crosses the center point of the hexagon.
- Short diagonal does not cross the center point of the hexagon.
- 36 base diagonals
- 12 face diagonals
- 36 space diagonals
- 2 bases
- 18 edges
- 6 side faces
- 12 vertexs
Base Area of a Regular Hexagonal Prism formula
\(\large{ A_b = 3\; \sqrt {3}\; \frac { a^2 } { 2 } }\) |
Where:
\(\large{A_b }\) = base area
\(\large{ a }\) = edge
Base Long Diagonal of a Regular Hexagon formula
\(\large{ D_l = 2\;a }\) |
Where:
\(\large{ D_l }\) = long diagonal
\(\large{ a }\) = edge
Base Short Diagonal of a Regular Hexagon formula
\(\large{ D_s = \sqrt{3}\;a }\) |
Where:
\(\large{ D_s }\) = short diagonal
\(\large{ a }\) = edge
Side Diagonal of a Regular Hexagonal Prism formula
\( \large{ d' = \sqrt { a^2 + h^2 } }\) |
Where:
\(\large{ d' }\) = diagonal
\(\large{ a }\) = edge
\(\large{ h }\) = height
Edge of a Regular Hexagonal Prism formula
\(\large{ a = \frac { A_{l} } { 6\;h } }\) | |
\(\large{ a = 3^{1/4}\; \sqrt {2\; \frac { V } { 9\;h } } }\) | |
\(\large{ a = \frac{1}{3} \; \sqrt { 3\;h^2 + \sqrt {3}\; A_s } - \sqrt {3}\; \frac {h}{3} }\) | |
\(\large{ a = 3^{1/4}\; \sqrt {2\; \frac { A_b } { 9 } } }\) |
Where:
\(\large{ a }\) = edge
\(\large{ h }\) = height
\(\large{ A_b }\) = base area
\(\large{ A_l }\) = lateral surface area
\(\large{ A_s }\) = surface area
\(\large{ V }\) = volume
Height of a Regular Hexagonal Prism formula
\(\large{ h = 2\; \sqrt {3}\; \frac { V } { 9\;a^2 } }\) | |
\(\large{ h = \frac {A_s} {6\;a } - \sqrt {3}\; \frac { a } {2 } }\) |
Where:
\(\large{ h }\) = height
\(\large{ a }\) = edge
\(\large{ A_s }\) = surface area
\(\large{ V }\) = volume
Lateral Surface Area of a Regular Hexagonal Prism formula
\(\large{ A_l = 6\;a\;h }\) |
Where:
\(\large{ A_l }\) = lateral surface area
\(\large{ a }\) = edge
\(\large{ h }\) = height
Surface Area of a Regular Hexagonal Prism formula
\(\large{ A_s = 6\;a\;h + 3\; \sqrt 3\; a^2 }\) |
Where:
\(\large{ A_s }\) = surface area
\(\large{ a }\) = edge
\(\large{ h }\) = height
Volume of a Regular Hexagonal Prism formula
\(\large{ V = \frac {3\; \sqrt {3} } { 2 } \; a^2\;h }\) |
Where:
\(\large{ V }\) = volume
\(\large{ a }\) = edge
\(\large{ h }\) = height
Tags: Equations for Volume