# Centrifugal Force

Written by Jerry Ratzlaff on . Posted in Classical Mechanics Centrifugal force, abbreviated as $$F_c$$ or $$F_{cf}$$, is when a force pushes away from the center of a circle, but this does not really exist.  When an object travels in a circle, the object always wants to go straight, but the centripetal force keeps the object traveling along an axis of rotation.

## Centrifugal force formulas

 $$\large{ F_c = m \; a_c }$$ $$\large{ F_c = \frac { m \; v^2 }{ r } }$$ $$\large{ F_c = \frac { m\; \left( 2 \; \pi \; r \; F \right)^2 }{ r } }$$ $$\large{ F_c = m\; \left( 2 \; \pi \; F \right)^2 \; r }$$

### Where:

 Units English Metric $$\large{ F_c }$$ = centrifugal force $$\large{lbf}$$ $$\large{N}$$ $$\large{ \omega }$$   (Greek symbol omega) = angular velocity $$\large{\frac{rad}{sec}}$$ $$\large{\frac{rad}{s}}$$ $$\large{ F }$$ = force $$\large{lbf}$$ $$\large{N}$$ $$\large{ \pi }$$ = Pi $$\large{3.141 592 653 589 793...}$$ $$\large{ m }$$ = mass $$\large{lbm}$$ $$\large{kg}$$ $$\large{ r }$$ = radius from the origin $$\large{ft}$$ $$\large{m}$$ $$\large{ v }$$ = velocity $$\large{\frac{ft}{sec}}$$ $$\large{\frac{m}{sec}}$$ Tags: Equations for Force