Centrifugal Force

Written by Jerry Ratzlaff on . Posted in Classical Mechanics

force centrifugalCentrifugal force, abbreviated as \(F_c\) or \(F_{cf}\), is when a force pushes away from the center of a circle, but this does not really exist.  When an object travels in a circle, the object always wants to go straight, but the centripetal force keeps the object traveling along an axis of rotation.

 

Centrifugal force formulas

\(\large{ F_c = m \; a_c }\) 
\(\large{ F_c = \frac { m \; v^2 }{ r } }\) 
\(\large{ F_c =  \frac { m\; \left( 2 \; \pi \; r \; F  \right)^2 }{ r } }\) 
\(\large{ F_c =  m\; \left( 2 \; \pi \; F  \right)^2 \; r  }\)

Where:

 Units English Metric
\(\large{ F_c }\) = centrifugal force \(\large{lbf}\) \(\large{N}\) 
\(\large{ \omega }\)   (Greek symbol omega) = angular velocity \(\large{\frac{rad}{sec}}\) \(\large{\frac{rad}{s}}\)
\(\large{ F }\) = force \(\large{lbf}\) \(\large{N}\) 
\(\large{ \pi }\) = Pi \(\large{3.141 592 653 589 793...}\)
\(\large{ m }\) = mass \(\large{lbm}\) \(\large{kg}\)
\(\large{ r }\) = radius from the origin \(\large{ft}\) \(\large{m}\)
\(\large{ v }\) = velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{sec}}\)

 

Piping Designer Logo 1 

Tags: Equations for Force