Average Velocity Change in Velocity

Written by Jerry Ratzlaff on . Posted in Classical Mechanics

When an object make changes in its velocity at different times that is an average velocity of any given velocities.

 

Average Velocity change in Velocity Formulas

\(\large{ \bar {v} = \frac { v_t } { t_t }    }\) 
\(\large{ \bar {v}= \frac { v_1 \;+\; v_2 \;+\; v_3 ... v_n } { t_1 \;+\; t_2 \;+\; t_3 ... t_n }  }\) 

Where:

 Units English Metric
\(\large{ \bar {v}  }\) = average of velocity \(\large{\frac{ft}{sec}}\)  \(\large{\frac{m}{s}}\) 
\(\large{ t  }\) = time \(\large{ sec }\) \(\large{ s }\)
\(\large{ t_t  }\) = total time \(\large{ sec }\) \(\large{ s }\)
\(\large{ v_t  }\) = total velocity \(\large{\frac{ft}{sec}}\)  \(\large{\frac{m}{s}}\) 
\(\large{ v  }\) = velocity \(\large{\frac{ft}{sec}}\)  \(\large{\frac{m}{s}}\) 

 

Piping Designer Logo 1

Tags: Velocity Equations