Moment of Inertia of an Annulus Formulas, Solid Plane
|
||
\( I_z \;=\; \dfrac {\pi}{2} \cdot \left( r_2{^4} - r_1{^4} \right) \) \( I_x \;=\; I_y \;=\; \dfrac {\pi}{4} \cdot \left( r_2{^4} - r_1{^4} \right) \) \( I_x \;=\; I_y \;=\; \dfrac {\pi}{64}\cdot D^4 - \dfrac {\pi}{64} \cdot d^4 \) |
||
Symbol | English | Metric |
\( I \) = Moment of Inertia | \(lbm\;/\;ft^2-sec\) | \(kg\;/\;m^2\) |
\( d \) = Inside Diameter | \( in \) | \( mm \) |
\( D \) = Outside Diameter | \( in \) | \( mm \) |
\( \pi \) = Pi | \(dimensionless\) | \(dimensionless\) |
\( r_1 \) = Radius | \( in \) | \( mm \) |
\( r_2 \) = Radius | \( in \) | \( mm \) |