Tension Change in Length

on . Posted in Classical Mechanics

   

strain 8

Tension Change in Length Formulas

\( \Delta d \;=\;  d_i - d_f  \) 

\( \Delta d \;=\;  \epsilon_{di} \cdot d_i  \) 

\( \Delta d \;=\;  \dfrac{ \mu \cdot \sigma }{ \lambda }  \cdot d_i  \) 

\( \Delta d \;=\;   \dfrac{ \mu \cdot p }{ \lambda \cdot A } \cdot d_i  \) 

\( \Delta l \;=\;  l_f - l_i  \)

\( \Delta l \;=\;  \lambda \cdot l_i  \)

\( \Delta l \;=\;   \dfrac{ \sigma }{ \lambda } \cdot l_i  \) 

\( \Delta l \;=\;   \dfrac{ p }{ \lambda \cdot A } \cdot  l_i  \) 

Symbol English Metric
\( A \) = area \( in^2 \) \( mm^2 \)
\( d_f \) = final depth \( in \) \( mm \)
\( d_i \) = initial depth \( in \) \( mm \)
\( \Delta d \) = depth change \( in \) \( mm \)
\( \lambda \)  (Greek symbol lambda) = elastic modulus \(lbf\;/\;in^2\) \(Pa\)
\( l_f \) = final length \( in \) \( mm \)
\( \Delta l \) = length change \( in \) \( mm \)
\( l \) = length under consideration \( in \) \( mm \)
\( \mu \)  (Greek symbol mu) = Poisson's Ratio \( dimensionless \) \( dimensionless \)
\( p \) = pressure under consideration \(lbf\;/\;in^2\) \(Pa\)
\( \epsilon \)  (Greek symbol epsilon) = strain \(in\;/\;in\) \(mm\;/\;mm\)
\( \sigma \)  (Greek symbol sigma) = stress \(lbf\;/\;in^2\) \(Pa\)
\( \sigma_t \)  (Greek symbol sigma) = tensile stress \(lbf\;/\;in^2\) \(Pa\)

 

Piping Designer Logo 1 

Tags: Strain and Stress