Skip to main content

Tension Change in Length

 

Tension Change in Length Formulas

\( \Delta d \;=\;  d_i - d_f  \) 

\( \Delta d \;=\;  \epsilon_{di} \cdot d_i  \) 

\( \Delta d \;=\;  \dfrac{ \mu \cdot \sigma }{ \lambda }  \cdot d_i  \) 

\( \Delta d \;=\;   \dfrac{ \mu \cdot p }{ \lambda \cdot A } \cdot d_i  \) 

\( \Delta L \;=\;  L_f - L_i  \)

\( \Delta L \;=\;  \lambda \cdot L_i  \)

\( \Delta L \;=\;   \dfrac{ \sigma }{ \lambda } \cdot L_i  \) 

\( \Delta L \;=\;   \dfrac{ p }{ \lambda \cdot A } \cdot  L_i  \) 

Symbol English Metric
\( A \) = Area \( in^2 \) \( mm^2 \)
\( d_f \) = Final Depth \( in \) \( mm \)
\( d_i \) = Initial Depth \( in \) \( mm \)
\( \Delta d \) = Change in  Depth \( in \) \( mm \)
\( \lambda \)  (Greek symbol lambda) = Elastic Modulus \(lbf\;/\;in^2\) \(Pa\)
\( L_f \) = Final Length \( in \) \( mm \)
\( \Delta L \) = Change in Length \( in \) \( mm \)
\( L \) = Length Under Consideration \( in \) \( mm \)
\( \mu \)  (Greek symbol mu) = Poisson's Ratio \( dimensionless \) \( dimensionless \)
\( p \) = Pressure Under Consideration \(lbf\;/\;in^2\) \(Pa\)
\( \epsilon \)  (Greek symbol epsilon) = Strain \(in\;/\;in\) \(mm\;/\;mm\)
\( \sigma \)  (Greek symbol sigma) = Stress \(lbf\;/\;in^2\) \(Pa\)
\( \sigma_t \)  (Greek symbol sigma) = Tensile Stress \(lbf\;/\;in^2\) \(Pa\)

strain 8

 

Piping Designer Logo 1