# Tension Change in Length

on . Posted in Classical Mechanics

### Tension Change in Length formulas

$$\Delta d = d_i - d_f$$

$$\Delta d = \epsilon_{di} \; d_i$$

$$\Delta d = ( \mu \; \sigma \;/\; \lambda ) \; d_i$$

$$\Delta d = ( \mu \; p \;/\; \lambda \; A ) \; d_i$$

$$\Delta l = l_f - l_i$$

$$\Delta l = \lambda \; l_i$$

$$\Delta l = ( \sigma \;/\; \lambda ) \; l_i$$

$$\Delta l = ( p \;/\; \lambda \; A ) \; l_i$$

Symbol English Metric
$$A$$ = area $$in^2$$ $$mm^2$$
$$d_f$$ = final depth $$in$$ $$mm$$
$$d_i$$ = initial depth $$in$$ $$mm$$
$$\Delta d$$ = depth change $$in$$ $$mm$$
$$\lambda$$  (Greek symbol lambda) = elastic modulus $$lbf\;/\;in^2$$ $$Pa$$
$$l_f$$ = final length $$in$$ $$mm$$
$$\Delta l$$ = length change $$in$$ $$mm$$
$$l$$ = length under consideration $$in$$ $$mm$$
$$\mu$$  (Greek symbol mu) = Poisson's Ratio $$dimensionless$$
$$p$$ = pressure under consideration $$lbf\;/\;in^2$$ $$Pa$$
$$\epsilon$$  (Greek symbol epsilon) = strain $$in\;/\;in$$ $$mm\;/\;mm$$
$$\sigma$$  (Greek symbol sigma) = stress $$lbf\;/\;in^2$$ $$Pa$$
$$\sigma_t$$  (Greek symbol sigma) = tensile stress $$lbf\;/\;in^2$$ $$Pa$$

Tags: Strain and Stress