Tension Change in Length
Tension Change in Length Formulas |
||
\( \Delta d \;=\; d_i - d_f \) \( \Delta d \;=\; \epsilon_{di} \cdot d_i \) \( \Delta d \;=\; \dfrac{ \mu \cdot \sigma }{ \lambda } \cdot d_i \) \( \Delta d \;=\; \dfrac{ \mu \cdot p }{ \lambda \cdot A } \cdot d_i \) \( \Delta l \;=\; l_f - l_i \) \( \Delta l \;=\; \lambda \cdot l_i \) \( \Delta l \;=\; \dfrac{ \sigma }{ \lambda } \cdot l_i \) \( \Delta l \;=\; \dfrac{ p }{ \lambda \cdot A } \cdot l_i \) |
||
Symbol | English | Metric |
\( A \) = area | \( in^2 \) | \( mm^2 \) |
\( d_f \) = final depth | \( in \) | \( mm \) |
\( d_i \) = initial depth | \( in \) | \( mm \) |
\( \Delta d \) = depth change | \( in \) | \( mm \) |
\( \lambda \) (Greek symbol lambda) = elastic modulus | \(lbf\;/\;in^2\) | \(Pa\) |
\( l_f \) = final length | \( in \) | \( mm \) |
\( \Delta l \) = length change | \( in \) | \( mm \) |
\( l \) = length under consideration | \( in \) | \( mm \) |
\( \mu \) (Greek symbol mu) = Poisson's Ratio | \( dimensionless \) | \( dimensionless \) |
\( p \) = pressure under consideration | \(lbf\;/\;in^2\) | \(Pa\) |
\( \epsilon \) (Greek symbol epsilon) = strain | \(in\;/\;in\) | \(mm\;/\;mm\) |
\( \sigma \) (Greek symbol sigma) = stress | \(lbf\;/\;in^2\) | \(Pa\) |
\( \sigma_t \) (Greek symbol sigma) = tensile stress | \(lbf\;/\;in^2\) | \(Pa\) |
Tags: Strain and Stress