Linear Motion

on . Posted in Classical Mechanics

linear motion 1Linear motion, also called rectilinear motion, refers to the motion of an object in a straight line with a constant velocity or changing velocity.  In other words, the object moves in a single direction without any rotation or angular movement.  Examples of linear motion include a train moving along a straight track, a car moving in a straight line on a highway, or a ball thrown in a straight line.  Linear motion can be described mathematically using equations of motion, which relate the displacement, velocity, and acceleration of the object

Linear Motion Index

 

Acceleration Linear motion formula

\( \overrightarrow{a} \;=\;   \Delta v \;/\; \Delta t  \)     (Acceleration Linear Motion)

\( \Delta v \;=\; \overrightarrow{a}  \; \Delta t   \)

\( \Delta t \;=\;   \Delta v \;/\; \overrightarrow{a}  \)

Symbol English Metric
\( \overrightarrow{a} \) = Linear Acceleration \(ft\;/\;sec^2\) \(m\;/\;s^2\)
\( \Delta v \) = Velocity Differential \(ft\;/\;sec\) \(m\;/\;s\)
\( \Delta t \) = Time Differential \( sec \) \( s \)

 

Displacement Linear motion formula

\( \overrightarrow{d} \;=\; v_i \; t + \frac{1}{2} a\;t^2  \)     (Displacement Linear Motion)

\( v_i \;=\; ( \overrightarrow{d} \;/\; t )  -  \frac{ 1 }{ 2 } \; a \; t    \)

\( t \;=\; \sqrt{   2 \; \left( \overrightarrow{d} - v_i \; t \right) \;/\; a  }  \)

\( a \;=\;   2 \; \left( \overrightarrow{d} - v_i \; t \right) \;/\; t^2    \)

Symbol English Metric
\( \overrightarrow{d} \) = Linear Displacement \( ft \) \(m \)
\( v_i \) = Initial Velocity \(ft\;/\;sec\) \(m\;/\;s\)
\( t \) = Time \( sec \) \( s \)
\( a \) = Acceleration \(ft\;/\;sec^2\) \(m\;/\;s^2\)

 

Velocity Linear motion formula

\( \overrightarrow{v_f} \;=\; v_i + a \; t  \)     (Velocity Linear Motion)

\( v_i \;=\; \overrightarrow{v_f} - a \; t  \)

\( a \;=\;   \overrightarrow{v_f} - v_i \;/\; t \)

\( t \;=\;   \overrightarrow{v_f} - v_i \;/\; a \)

Symbol English Metric
\( \overrightarrow{v_f} \) = Linear Final Velocity \(ft\;/\;sec\) \(m\;/\;s\)
\( v_i \) = Initial Velocity \(ft\;/\;sec\) \(m\;/\;s\)
\( a \) = Acceleration \(ft\;/\;sec^2\) \(m\;/\;s^2\)
\( t \) = Time \( sec \) \( s \)

 

Piping Designer Logo 1 

Tags: Motion