Skip to main content

Linear Motion

 

Acceleration Linear Motion Formula

\( \overrightarrow{a} \;=\;  \dfrac{ \Delta v }{ \Delta t  }\)     (Acceleration Linear Motion)

\( \Delta v \;=\; \overrightarrow{a}  \cdot \Delta t   \)

\( \Delta t \;=\;  \dfrac{ \Delta v }{ \overrightarrow{a}  }\)

Symbol English Metric
\( \overrightarrow{a} \) = Linear Acceleration \(ft\;/\;sec^2\) \(m\;/\;s^2\)
\( \Delta v \) = Velocity Differential \(ft\;/\;sec\) \(m\;/\;s\)
\( \Delta t \) = Time Differential \( sec \) \( s \)

linear motion 1Linear motion, also called rectilinear motion, refers to the motion of an object in a straight line with a constant velocity or changing velocity.  In other words, the object moves in a single direction without any rotation or angular movement.  Examples of linear motion include a train moving along a straight track, a car moving in a straight line on a highway, or a ball thrown in a straight line.  Linear motion can be described mathematically using equations of motion, which relate the displacement, velocity, and acceleration of the object.

Piping Designer Logo 1 

 

Displacement Linear Motion Formula

\( \overrightarrow{d} \;=\; v_i \cdot t + \dfrac{1}{2} \: a\cdot t^2  \)     (Displacement Linear Motion)

\( v_i \;=\; \dfrac{ \overrightarrow{d} }{ t }  -  \dfrac{ 1 }{ 2 } \cdot a \cdot t    \)

\( t \;=\; \sqrt{  \dfrac{ 2 \cdot \left( \overrightarrow{d} - v_i \cdot t \right) }{ a  }  }\)

\( a \;=\;  \dfrac{  2 \cdot \left( \overrightarrow{d} - v_i \cdot t \right) }{ t^2    }\)

Symbol English Metric
\( \overrightarrow{d} \) = Linear Displacement \( ft \) \(m \)
\( v_i \) = Initial Velocity \(ft\;/\;sec\) \(m\;/\;s\)
\( t \) = Time \( sec \) \( s \)
\( a \) = Acceleration \(ft\;/\;sec^2\) \(m\;/\;s^2\)

 

 

 

 

 

 

 

 

 

 

 

 

Velocity Linear Motion Formula

\( \overrightarrow{v_f} \;=\; v_i + a \cdot t  \)     (Velocity Linear Motion)

\( v_i \;=\; \overrightarrow{v_f} - a \cdot t  \)

\( a \;=\;  \dfrac{ \overrightarrow{v_f} - v_i }{ t }\)

\( t \;=\;  \dfrac{ \overrightarrow{v_f} - v_i }{ a }\)

Symbol English Metric
\( \overrightarrow{v_f} \) = Linear Final Velocity \(ft\;/\;sec\) \(m\;/\;s\)
\( v_i \) = Initial Velocity \(ft\;/\;sec\) \(m\;/\;s\)
\( a \) = Acceleration \(ft\;/\;sec^2\) \(m\;/\;s^2\)
\( t \) = Time \( sec \) \( s \)