# Velocity Differential

on . Posted in Classical Mechanics

Velocity differential, abbreviated as $$\Delta v$$ or $$\Delta \omega$$ (Greek symbol omega), is the average rate of change or displacement with time.  This is determined by taking the instantaneous velocity of an object, relative to another, in two points of time.  The calculator below, determines change of the average rate over these two points.

## Velocity differential formula

$$\large{ \Delta v = v_f - v_i }$$
Symbol English Metric
$$\large{ \Delta v }$$ = velocity differential $$\large{\frac{ft}{sec}}$$  $$\large{\frac{m}{s}}$$
$$\large{ v_f }$$ = final velocity $$\large{\frac{ft}{sec}}$$ $$\large{\frac{m}{s}}$$
$$\large{ v_i }$$ = initial velocity $$\large{\frac{ft}{sec}}$$ $$\large{\frac{m}{s}}$$

## Velocity differential formula

$$\large{ \Delta v = \frac{I}{m} }$$
Symbol English Metric
$$\large{ \Delta v }$$ = velocity differential $$\large{\frac{ft}{sec}}$$  $$\large{\frac{m}{s}}$$
$$\large{ I }$$ = impulse $$\large{lbf-sec}$$   $$\large{N-s}$$
$$\large{ m }$$ = mass $$\large{lbm}$$  $$\large{kg}$$

## Velocity differential formula

$$\large{ \Delta v = \frac{\Delta p}{m} }$$
Symbol English Metric
$$\large{ \Delta v }$$ = velocity differential $$\large{\frac{ft}{sec}}$$  $$\large{\frac{m}{s}}$$
$$\large{ m }$$ = mass $$\large{lbm}$$  $$\large{kg}$$
$$\large{ \Delta p }$$ = momentum differential  $$\large{\frac{lbm-ft}{sec}}$$ $$\large{\frac{kg-m}{s}}$$