# Pipe Sizing for Condensate Recovery

on . Posted in Fluid Dynamics

## Condensate Recovery Pressure Loss through piping Formula

$$\large{ p_l = \frac { 1000 \; \mu \; l \; v_c{^2} } {2\;d \; V_{temp} } }$$
Symbol English Metric
$$\large{ p_l }$$ = condensate pressure loss $$\large{\frac{lbf}{in^2}}$$   $$\large{Pa}$$
$$\large{ v_c }$$ = condensate velocity  $$\large{\frac{ft}{sec}}$$   $$\large{\frac{m}{s}}$$
$$\large{ \mu }$$  (Greek symbol mu) = friction coefficient  $$\large{ dimensionless }$$
$$\large{ d }$$ = inside diameter of pipe  $$\large{ in }$$      $$\large{ mm }$$
$$\large{ l }$$ = pipe length  $$\large{ ft }$$     $$\large{ m }$$
$$\large{ V_{temp} }$$ = temporary specific volume variable $$\large{\frac{ft^3}{lbm}}$$  $$\large{\frac{m^3}{kg}}$$

## Condensate Recovery Velocity through piping Formula

$$\large{ v_c = \frac { 1000\;m_c \; V_{temp} } { 3.6\; \pi \; { \left( \frac {d}{2} \right) ^2 } } }$$
Symbol English Metric
$$\large{ v_c }$$ = condensate velocity $$\large{\frac{ft}{sec}}$$    $$\large{\frac{m}{s}}$$
$$\large{ m_c }$$ = condensate load   $$\large{lbm}$$  $$\large{kg}$$
$$\large{ d }$$ = inside diameter of pipe  $$\large{ in }$$     $$\large{ mm }$$
$$\large{ \pi }$$ = Pi   $$\large{3.141 592 653 ...}$$
$$\large{ V_{temp} }$$ = temporary specific volume variable  $$\large{\frac{ft^3}{lbm}}$$ $$\large{\frac{m^3}{kg}}$$

## Condensate Recovery Steam Pressure Loss through piping Formula

$$\large{ p_l = \frac { \mu \; l \; v_s{^2} } {2\;d \; V_{temp} } }$$
Symbol English Metric
$$\large{ p_l }$$ = steam pressure loss $$\large{\frac{lbf}{in^2}}$$  $$\large{Pa}$$
$$\large{ \mu }$$  (Greek symbol mu) = friction coefficient  $$\large{ dimensionless }$$
$$\large{ d }$$ = inside diameter of pipe  $$\large{ in }$$    $$\large{ mm }$$
$$\large{ l }$$ = pipe length  $$\large{ ft }$$    $$\large{ m }$$
$$\large{ v_s }$$ = steam velocity $$\large{\frac{ft}{sec}}$$  $$\large{\frac{m}{s}}$$
$$\large{ V_{temp} }$$ = temporary specific volume variable $$\large{\frac{ft^3}{lbm}}$$  $$\large{\frac{m^3}{kg}}$$ 