Thermal Stress

Written by Jerry Ratzlaff on . Posted in Thermodynamics

thermal stress 2Thermal stress, abbreviated as \( \sigma \) (Greek symbol sigma), is resulting from non uniform distribution of temperature.

 

thermal Stress formula

\(\large{ \sigma = \alpha \; E \; \Delta T   }\)   

Where:

 Units English Metric
\(\large{ \sigma }\)  (Greek symbol sigma) = thermal stress \(\large{\frac{lbf}{in^2}}\) \(\large{Pa}\)
\(\large{ E }\) = elastic modulus \(\large{\frac{lbf}{in^2}}\) \(\large{Pa}\)
\(\large{ \Delta T }\) = temperature differential \(\large{F}\) \(\large{C}\)
\(\large{ \alpha }\)  (Greek symbol alpha) = thermal expansion coefficient \(\large{\frac{in}{in-F}}\) \(\large{\frac{mm}{mm-C}}\)

 

P D Logo 1

 

Tags: Temperature Equations Thermal Equations Strain and Stress Equations