Skip to main content

Zed beam 1Zed beam, also called known as a "Z-shaped" or "Z-section" beam, is a variation of the letter "Z," which reflects the shape of the cross-sectional profile of the beam.  A Zed beam, or Z-section beam, has a cross-sectional shape resembling the letter "Z," with flanges (horizontal top and bottom parts) that are parallel and connected by a vertical web.  The flanges are usually smaller in width than those of an I-beam, and they extend outward from the web at the top and bottom.  The web connects the two flanges and provides vertical rigidity to the beam.

 

area of a Zed formula

\( A \;=\;   t \cdot \left[ l  +  2 \cdot  \left( w - t  \right)  \right]  \)
Symbol English Metric
\( A \) = area \( in^2 \) \( mm^2 \)
\( l \) = height \( in \) \( mm \)
\( t \) = thickness \( in \) \( mm \)
\( w \) = width \( in \) \( mm \)

 

Distance from Centroid of a Zed formulas

\( C_x \;=\;  \dfrac{ 2\cdot w - t }{ 2  }  \) 

\( C_y \;=\;  \dfrac{ l }{ 2  }  \) 

Symbol English Metric
\( C \) = distance from centroid \( in \) \( mm \)
\( l \) = height \( in \) \( mm \)
\( t \) = thickness \( in \) \( mm \)
\( w \) = width \( in \) \( mm \)

 

Elastic Section Modulus of a Zed formulas

\( S_{x} \;=\;  \dfrac{ I_{x} }{ C_{y}   } \) 

\( S_{y} \;=\;  \dfrac{ I_{y} }{ C_{x}   } \) 

Symbol English Metric
\( S \) = elastic section modulus \( in^3 \) \( mm^3 \)
\( C \) = distance from centroid \( in \) \( mm \)
\( I \) = moment of inertia \( in^4 \) \( mm^4 \)

 

Perimeter of a Zed formula

\( P \;=\;  2 \cdot \left( w  +  l \right) - t  \)
Symbol English Metric
\( P \) = perimeter \( in \) \( mm \)
\( l \) = height \( in \) \( mm \)
\( t \) = thickness \( in \) \( mm \)
\( w \) = width \( in \) \( mm \)

 

Polar Moment of Inertia of a Zed formulas

\( J_{z} \;=\;  I_{x}  +  I_{y} \) 

\( J_{z1} \;=\;  I_{x1}  +  I_{y1} \) 

Symbol English Metric
\( J \) = torsional constant \( in^4 \) \( mm^4 \)
\( I \) = moment of inertia \( in^4 \) \( mm^4 \)

 

Radius of Gyration of a Zed formulas

\( k_{x} \;=\;  \sqrt{  \dfrac{  w\cdot l^3 -  c \cdot \left( l - 2\cdot t \right)^3   }{ 12\cdot t \cdot \left[  l +  2 \cdot \left( w - t \right) \right]    }   }   \) 

\( k_{y} \;=\;    \dfrac{l \cdot \left( w + c \right)^3 - 2c^3 \cdot h  - 6\cdot w^2\cdot c\cdot h   }{ 12\cdot t \cdot \left[  l +  2 \cdot \left( w - t \right) \right]    }    \) 

\( k_{z} \;=\;    \sqrt{  k_{x}{^2} + k_{y}{^2}  } \) 

\( k_{x1} \;=\;  \sqrt{  \dfrac{ I_{x1} }{ A  }   }   \)

\( k_{y1} \;=\;  \sqrt{  \dfrac{ I_{y1} }{ A  }   }   \)

\( k_{z1} \;=\;    \sqrt{  k_{x1}{^2} + k_{y1}{^2}  } \)

Symbol English Metric
\( k \) = radius of gyration \( in \) \( mm \)
\( A \) = area \( in^2 \) \( mm^2 \)
\( h \) = height \( in \) \( mm \)
\( l \) = height \( in \) \( mm \)
\( I \) = moment of inertia \( in^4 \) \( mm^4 \)
\( t \) = thickness \( in \) \( mm \)
\( c \) = width \( in \) \( mm \)
\( w \) = width \( in \) \( mm \)

 

Second Moment of Area of a Zed formulas

\( I_{x} \;=\;   \dfrac{  w\cdot l^3 -  c \cdot  \left( l - 2\cdot t \right)^3   }{12}   \) 

\( I_{y} \;=\;   \dfrac{   l \cdot  \left( w + c \right)^3 - 2\cdot c^3\cdot  h - 6\cdot w^2 \cdot c\cdot h   }{12}   \) 

\( I_{x1} \;= \; I_{x}  +  A\cdot C_{y}{^2} \) 

\( I_{y1} \;=\;  I_{y}  +  A\cdot C_{x}{^2} \)

Symbol English Metric
\( I \) = moment of inertia \( in^4 \) \( mm^4 \)
\( A \) = area \( in^2 \) \( mm^2 \)
\( C \) = distance from centroid \( in \) \( mm \)
\( h \) = height \( in \) \( mm \)
\( l \) = height \( in \) \( mm \)
\( t \) = thickness \( in \) \( mm \)
\( c \) = width \( in \) \( mm \)
\( w \) = width \( in \) \( mm \)

 

Piping Designer Logo 1