Skip to main content

Beam Fixed at One End - Concentrated Load at Any Point

Diagram Symbols

Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

 

feoe 3A

Beam Fixed at One End - Concentrated Load at any point formulas

\( R_1 \;=\; V_1 \;=\;   \dfrac{ P \cdot b^2 }{ 2 \cdot L^3 } \cdot (  a + 2 \cdot L )  \) 

\( R_2 \;=\; V_2  \;=\;   \dfrac{ P \cdot a }{ 2 \cdot L^3 } \cdot  ( 3 \cdot L^2 - a^2 )  \) 

\( M_1 \; (at\; point\; of \;load )  \;=\;  R_1 \cdot a  \) 

\( M_2 \; (at\; fixed \;end ) \;=\;   \dfrac{ P \cdot a \cdot b }{ 2 \cdot L^2 }  \cdot  ( a + L )  \)

\( M_x \; ( x < a ) \;=\;  R_1 \cdot x  \)

\( M_x  \; ( x > a ) \;=\; R_1 \cdot x - [\; P\; ( x - a ) \;] \)

\( \Delta_{max}  \; ( at \;x = L \;  \frac{ L^2 \;+\; a^2 }{ 3\;L^2 \;-\; a^2 } \; when\; a < 0.414 \;L )  \;=\; \dfrac{ P \cdot a }{ 3 \cdot \lambda \cdot I } \cdot   \dfrac{ ( L^2 - a^2 ) ^3 }{  ( 3 \cdot L^2  -  a^2 ) ^2 }   \)

\( \Delta_{max} \; ( at \;x = L \;\sqrt{ \frac{ a }{ 2\;L \;+\; a } } \; when\; a > 0.414 \;L )  \;=\; \dfrac{ P \cdot a \cdot b^2 }{ 6 \cdot \lambda \cdot I }  \cdot  \sqrt{ \dfrac{ a }{ 2 \cdot L + a } } \)

\( \Delta_a \; (at\; point\; of\; load ) \;=\;  \dfrac{ P \cdot a^3 \cdot b^2 }{ 12 \cdot \lambda \cdot I \cdot L^3 }  \cdot ( 3 \cdot L + b )   \)

\( \Delta_x  \; ( x < a ) \;=\;   \dfrac{ P \cdot b^2 \cdot x }{ 12 \cdot \lambda \cdot I \cdot L^3 } \cdot  ( 3 \cdot a \cdot L^2 - 2 \cdot L \cdot x^2 - a \cdot x^2 )  \)

\( \Delta_x  \; ( x > a ) \;=\;  \dfrac{ P \cdot a }{ 12 \cdot \lambda \cdot I \cdot L^3 }  \cdot   ( L - x )^2  \cdot   ( 3 \cdot L^2 \cdot x - a^2 \cdot x  -  2 \cdot a^2 \cdot L )   \)

Symbol English Metric
\( R \) = Reaction Load at Bearing Point \(lbf\) \(N\)
\( V \) = Maximum Shear Force \(lbf\) \(N\)
\( M \) = Maximum Bending Moment \(lbf - in\) \(N - mm\)
\( \Delta \) = Deflection or Deformation \(in\) \(m\)
\( P \) = Total Concentrated Load \(lbf\) \(N\)
\( a, b \) = Length to Point Load \(in\) \(m\)
\( L \) = Span Length of the Bending Member \(in\) \(m\)
\( x \) = Horizontal Distance from Reaction to Point on Beam \(in\) \(m\)
\( \lambda \)   (Greek symbol lambda) = Modulus of Elasticity \(lbf\;/\;in^2\) \(Pa\)
\( I \) = Eecond Moment of Area (Moment of Inertia) \(in^4\) \(mm^4\)

 

Piping Designer Logo Slide 1