Overhanging Beam - Uniformly Distributed Load Over Supported Span
- See Article - Beam Design Formulas
Diagram Symbols
Bending moment diagram (BMD) - Used to determine the bending moment at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Free body diagram (FBD) - Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
Shear force diagram (SFD) - Used to determine the shear force at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
Uniformly distributed load (UDL) - A load that is distributed evenly across the entire length of the support area.
Overhanging Beam - Uniformly Distributed Load Over Supported Span formulas |
||
\( R \;=\; V \;=\; \dfrac{ w\cdot L }{ 2 }\) \( V_x \;=\; w \cdot \left( \dfrac{ L }{ 2 } - x \right) \) \( M_{max} \; (at \;center ) \;=\; \dfrac{ w\cdot L^2 }{ 8 }\) \( M_x \;=\; \dfrac{ w\cdot x }{ 2} \cdot ( L - x ) \) \( \Delta_{max} \; \left(at \;center \right) \;=\; \dfrac{ 5\cdot w\cdot L^4 }{ 384\cdot \lambda \cdot I }\) \( \Delta_x \;=\; \dfrac{ w\cdot x }{ 24\cdot \lambda\cdot I } \cdot ( L^3 - 2\cdot L\cdot x^2 + x^3 ) \) \( \Delta_{x_1} \;=\; \dfrac{ - w \cdot L^3 \cdot x_1 }{ 24\cdot \lambda\cdot I } \) |
||
Symbol | English | Metric |
\( \Delta \) = deflection or deformation | \(in\) | \(mm\) |
\( x \) = horizontal distance from reaction to point on beam | \(in\) | \(mm\) |
\( w \) = load per unit length | \(lbf\;/\;in\) | \(N\;/\;mm\) |
\( M \) = maximum bending moment | \(lbf-in\) | \(N-mm\) |
\( V \) = maximum shear force | \(lbf\) | \(N\) |
\( \lambda \) (Greek symbol lambda) = modulus of elasticity | \(lbf\;/\;in^2\) | \(Pa\) |
\( R \) = reaction load at bearing point | \(lbf\) | \(N\) |
\( I \) = second moment of area (moment of inertia) | \(in^4\) | \(mm^4\) |
\( L \) = span length of the bending member | \(in\) | \(mm\) |