Skip to main content

Water Hammer Unit Weight of Fluid

               

Water Hammer Unit Weight of Fluid Formula

\(\large{  \gamma_f  \;=\;  \dfrac{ 144\cdot p_{sf} \cdot g }{ \alpha \cdot \Delta v }   }\)     (Water Hammer Unit Weight of Fluid)

\(\large{  \alpha  \;=\; \dfrac{ 144\cdot p_{sf} \cdot g }{ \gamma_f \cdot \Delta v  }   }\)

\(\large{  144  \;=\; \dfrac{ \gamma_f \cdot \alpha \cdot \Delta v }{ p_{sf} \cdot \Delta v }   }\)

\(\large{  p_{sf}  \;=\; \dfrac{ \gamma_f \cdot \alpha \cdot \Delta v }{144 \cdot g }   }\)

\(\large{  g  \;=\; \dfrac{ \gamma_f \cdot \alpha \cdot \Delta v }{ 144 \cdot p_{sf} }   }\)

\(\large{  \Delta v  \;=\; \dfrac{ 144\cdot p_{sf} \cdot g }{ \gamma_f \cdot \alpha }   }\)

Symbol English Metric
\(\large{  \gamma_f } \)  (Greek symbol gamma) = Unit Weight of Fluid \(lbm\;/\;ft^3\) -
\(\large{ \alpha }\)  (Greek symbol alpha) = Pressure Wave Velocity \(ft\;/\;sec\) -
\(\large{ \Delta v }\) = Fluid Velocity Change \(ft\;/\;sec\) -
\(\large{ g }\) = Gravitational Acceleration \(ft\;/\;sec^2\) -
\(\large{ p_{spf} }\) = Maximum Surge Pressure for Fluid \(lbf\;/\;in^2\) -

 

Piping Designer Logo 1