Simple Beam - Load Increasing Uniformly to One End
- See Article Link - Beam Design Formulas
- Tags: Beam Support
diagram Symbols
- Bending moment diagram (BMD) - Used to determine the bending moment at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Free body diagram (FBD) - Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
- Shear force diagram (SFD) - Used to determine the shear force at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Uniformly distributed load (UDL) - A load that is distributed evenly across the entire length of the support area.
Simple Beam - Load Increasing Uniformly to One End formulas |
||
\( R_1 \;=\ V_1 \;=\; W \;/\;3\) \( R_2 \;=\ V_2 \;=\; 2\;W \;/\;3\) \( V_x \;=\ (W\;/\;3) - (W\;x^2\;/\;L^2)\) \( M_{max} \; (at \; x = L\;/\; \sqrt{3}\; ) \;=\; 2\;W\;L \;/\; 9\; \sqrt{3} \) \( M_x \;=\; (W \;x\;/\;3\;L^2) \; ( L^2 - x^2 ) \) \( \Delta_{max} \; ( \;at \; x = L\; \sqrt{1 - ( 8/15 )^{\frac{1}{2} } } \;) \;=\; 0.01304 \; ( W \;L^3\;/\; \lambda \;I ) \) \( \Delta_x \;=\; (W \;x\;/\; 180\; \lambda \;I \;L^2 ) \; ( 3\;x^4 - 10\;L^2\;x^2 + 7\;L^4 ) \) |
||
Symbol | English | Metric |
\( R \) = reaction load at bearing point | \(lbf\) | \(N\) |
\( V \) = maximum shear force | \(lbf\) | \(N\) |
\( M \) = maximum bending moment | \(lbf-in\) | \(N-mm\) |
\( \Delta \) = deflection or deformation | \(in\) | \(mm\) |
\( W \) = total load or \( w\;L\;/\;2 \) | \(lbf\) | \(N\) |
\( w \) = highest load per unit length of UIL | \(lbf\;/\;in\) | \(N\;/\;m\) |
\( L \) = span length of the bending member | \(in\) | \(mm\) |
\( x \) = horizontal distance from reaction to point on beam | \(in\) | \(mm\) |
\( \lambda \) (Greek symbol lambda) = modulus of elasticity | \(lbf\;/\;in^2\) | \(Pa\) |
\( I \) = second moment of area (moment of inertia) | \(in^4\) | \(mm^4\) |
Tags: Beam Support