Overhanging Beam - Uniformly Distributed Load Overhanging Both Supports

on . Posted in Structural Engineering

ob 4A

diagram Symbols

  • Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
  • Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

 

 

 

 

Overhanging Beam - Uniformly Distributed Load Overhang Both Supports formulas

\( R_1 \;=\;  [\;w\; L \; ( L\; -\; 2\;c ) \;] \;/\;2\;b      \) 

\( R_2 \;=\; [\; w\; L \; ( L \;-\; 2\;a ) \;]   \;/\;2\;b    \) 

\( V_1  \;=\;   w\;a   \) 

\( V_2  \;=\;   R_1 - V_1   \)

\( V_3  \;=\;   R_2 - V_4   \)

\( V_4  \;=\;   w\;c   \)

\( V_{x_1}  \;=\;   V_1 -  [\; w \; ( a - x_1 ) \;]  \)

\( V_x \; ( x < b )   \;=\;   R_1 - [\; w \; ( a + x ) \;]   \)

\( M_1 \;=\; - \; (w\; a^2\;/\;2)    \)

\( M_2 \;=\; - \; (w \;c^2\;/\;2)    \)

\( M_3 \;\;=\;\;  R_1 \; [\; (R_1\;/\;2\;w) - a  \;]   \)

\( M_x \;=\; R_1 \; x \; - [\; w \; ( a + x )^2\;/\;2 \;]     \)

Symbol English Metric
\( x \) = horizontal distance from reaction to point on beam \(in\) \(mm\)
\( w \) = load per unit length \(lbf\;/\;in\) \(N\;/\;m\)
\( M \) = maximum bending moment \(lbf-in\) \(N-mm\)
\( V \) = maximum shear force \(lbf\) \(N\)
\( \lambda  \)   (Greek symbol lambda) = modulus of elasticity \(lbf\;/\;in^2\) \(Pa\)
\( R \) = reaction load at bearing point \(lbf\) \(N\)
\( I \) = second moment of area (moment of inertia) \(in^4\) \(mm^4\)
\( L \) = span length of the bending member \(in\) \(mm\)
\( a, b, c \) = span length under consideration \(in\) \(mm\)

 

Piping Designer Logo Slide 1 

 

Tags: Beam Support