Two Span Continuous Beam - Unequal Spans, Uniformly Distributed Load
- See Article Link - Beam Design Formulas
- Tags: Beam Support
diagram Symbols
- Bending moment diagram (BMD) - Used to determine the bending moment at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Free body diagram (FBD) - Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
- Shear force diagram (SFD) - Used to determine the shear force at a given point of a structural element. The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
- Uniformly distributed load (UDL) - A load that is distributed evenly across the entire length of the support area.
Span Continuous Beam - Unequal Spans, Uniformly Distributed Load formulas |
||
\( R_1 \;=\; V_1 \;=\; (M_1\;/\;a) + (w\;a\;/\;2) \) \( R_2 \;=\; w\;a + w\;b - R_1 - R_3 \) \( R_3 \;=\; V_4 \;=\; (M_1\;/\;b) + (w\;a\;/\;2) \) \(V_2 \;=\; w\;a - R_1 \) \( V_3 \;=\; w\;b - R_3 \) \( M_1 \;=\; (w\;b^3 + w\;a^3) \;/\;[\;8 \; ( a+b ) \;] \) \( M_1 \;=\; (w\;b^3 + w\;a^3) \;/\; [\;8 \; ( a+ b) \;] \) \( M_{x_2} \; ( x_2 = \frac{R_3}{w} ) \;=\; R_3 \;x_2 - (w\;x_2^2 \;/\; 2) \) |
||
Symbol | English | Metric |
\( \Delta \) = deflection or deformation | \(in\) | \(mm\) |
\( x \) = horizontal distance from reaction to point on beam | \(in\) | \(mm\) |
\( w \) = load per unit length | \(lbf\;/\;in\) | \(N\;/\;m\) |
\( M \) = maximum bending moment | \(lbf-in\) | \(N-mm\) |
\( V \) = maximum shear force | \(lbf\) | \(N\) |
\( R \) = reaction load at bearing point | \(lbf\) | \(N\) |
\( a, b \) = span length under consideration | \(in\) | \(mm\) |
Tags: Beam Support