Two Span Continuous Beam - Unequal Spans, Uniformly Distributed Load

on . Posted in Structural Engineering

cb3s 3A

diagram Symbols

  • Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
  • Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

 

 

 

 

Span Continuous Beam - Unequal Spans, Uniformly Distributed Load formulas

\( R_1 \;=\; V_1   \;=\; (M_1\;/\;a) + (w\;a\;/\;2)   \) 

\( R_2   \;=\; w\;a + w\;b - R_1 - R_3    \) 

\( R_3 \;=\; V_4   \;=\; (M_1\;/\;b) + (w\;a\;/\;2)   \) 

\(V_2   \;=\; w\;a - R_1  \)

\( V_3   \;=\; w\;b - R_3  \)

\( M_1  \;=\; (w\;b^3 + w\;a^3) \;/\;[\;8 \; ( a+b ) \;]   \)

\( M_1  \;=\; (w\;b^3 + w\;a^3)  \;/\; [\;8 \; ( a+ b) \;]   \)

\( M_{x_2} \; ( x_2 = \frac{R_3}{w} )   \;=\; R_3 \;x_2  - (w\;x_2^2 \;/\; 2)   \)

Symbol English Metric
\( \Delta \) = deflection or deformation \(in\) \(mm\)
\( x \) = horizontal distance from reaction to point on beam \(in\) \(mm\)
\( w \) = load per unit length \(lbf\;/\;in\) \(N\;/\;m\)
\( M \) = maximum bending moment \(lbf-in\) \(N-mm\)
\( V \) = maximum shear force \(lbf\) \(N\)
\( R \) = reaction load at bearing point \(lbf\) \(N\)
\( a, b \) = span length under consideration \(in\) \(mm\)

 

Piping Designer Logo 1

Tags: Beam Support