Two Span Continuous Beam - Equal Spans, Two Equal Concentrated Loads Symmetrically Placed

on . Posted in Structural Engineering

cb3s 5A

diagram Symbols

  • Bending moment diagram (BMD)  -  Used to determine the bending moment at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Free body diagram (FBD)  -  Used to visualize the applied forces, moments, and resulting reactions on a structure in a given condition.
  • Shear force diagram (SFD)  -  Used to determine the shear force at a given point of a structural element.  The diagram can help determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure.
  • Uniformly distributed load (UDL)  -  A load that is distributed evenly across the entire length of the support area.

 

 

 

 

Two Span Continuous Beam - Equal Spans, Two Equal Concentrated Loads Symmetrically Placed  formulas

\( R_1 \;=\; V_1 \;=\; R_3 \;=\; V_3   \;=\; 5\;P\;/\;16 \)

\( R_2 \;=\; 2V_2  \;=\; 11\;P\;/\;8 \) 

\( V_2 \;=\; P - R_1   \;=\; 11\;P\;/\;16 \) 

\( V_{max}   \;=\; V_2  \)

\( M_1  \;=\; - \;(3\;P\;L\;/\;16) \)

\( M_2  \;=\; 5\;P\;L\;/\;32 \)

\( M_x  \; ( x < \frac{L}{2} )  \;=\; R_1\; x  \)

Symbol English Metric
\( x \) = horizontal distance from reaction to point on beam \(in\) \(mm\)
\( M \) = maximum bending moment \(lbf-in\) \(N-mm\)
\( V \) = maximum shear force \(lbf\) \(N\)
\( R \) = reaction load at bearing point \(lbf\) \(N\)
\( L \) = span length under consideration \(in\) \(mm\)
\( P \) = total consideration load \(lbf\) \(N\)

 

Piping Designer Logo 1

Tags: Beam Support