Skip to main content

Force Exerted by Contracting or Stretching a Material

 

Force Exerted by Contracting or Stretching a Material Formula

\( F \;=\;  \dfrac{  \lambda \cdot A \cdot L_c  }{ L_o }\)     (Force Exerted by Contracting or Stretching a Material)

\( \lambda \;=\;   \dfrac{ F \cdot L_o  }{ A \cdot L_c }\)

\( A \;=\;    \dfrac{  F \cdot L_o  }{ \lambda \cdot L_c }\)

\( L_c \;=\;  \dfrac{  F \cdot L_o  }{ \lambda \cdot A }\)

\( L_o \;=\;   \dfrac{ \lambda \cdot A \cdot L_c  }{ F }\)

Symbol English Metric
\( F \) = Force Exerted \(lbf\) \(N\)
\( \lambda \)  (Greek symbol lambda) = Modulus of Elasticity \(lbf\;/\;in^2\) \(Pa\)
\( A \) = Rigional Area Cross-Section Through Which the Force is Applied \(ft^2\) \(m^2\)
\( L_c \) = Change in Length \(ft\) \(m\)
\( L_o \) = Origional Length \(ft\) \(m\)

force contracting or stretchingAny strain exerted on a material causes an internal elastic stress.  The force applied on a material when contracting or stretching is related to how much the length of the object changes. 

Piping Designer Logo 1