Orifices and Nozzles on a Horizontal Plane
When orifices and nozzles are installed having the piping horizontal and assuming that there is no elevation change, the following equations can be used.
Orifices and Nozzles on a Horizontal Plane formulas
\(\large{ Q = C_d \; A_o \; Y \; \sqrt { \frac{ 2 \; \Delta p}{ \rho \; \left( 1\; -\; \beta^4 \right) } } }\) | |
\(\large{ Q = C_d \; A_o \; Y \; \sqrt { \frac{ 2 \; g \; \Delta h}{ \rho \; \left( 1\; -\; \beta^4 \right) } } }\) | |
\(\large{ \Delta P = \frac{1}{2} \; \rho \; \left( 1 - \beta^4 \right) \; \left( \frac{ Q }{ C_d \; A_o \; Y } \right)^2 }\) | |
\(\large{ \Delta h = \frac{1}{2\;g} \; \left( 1 - \beta^4 \right) \; \left( \frac{ Q }{ C_d \; A_o \; Y } \right)^2 }\) |
Where:
\(\large{ Q }\) = flow rate
\(\large{ \rho }\) (Greek symbol rho) = density
\(\large{ C_d }\) = discharge coefficient
\(\large{ \Delta y }\) = elevation change ( \(\Delta y = y_1 - y_2\) )
\(\large{ Y }\) = expansion coefficient (Y = 1 for incompressible flow)
\(\large{ g }\) = gravitational acceleration
\(\large{ G }\) = gravitational constant
\(\large{ \Delta h }\) = head loss
\(\large{ A_o }\) = orifice area (GOA)
\(\large{ p }\) = pressure
\(\large{ \Delta p }\) = pressure differential ( \(\Delta p = p_2 - p_1\) )
\(\large{ \beta }\) (Greek symbol beta) = ratio of pipe inside diameter to orifice diameter
Solve for:
\(\large{ Y = \frac{ C_{d,c} }{ C_{d,i} } }\)
\(\large{ C_{d,c} }\) = discharge coefficient compressible fluid
\(\large{ C_{d,i} }\) = discharge coefficient incompressible fluid
\(\large{ \beta }\) (Greek symbol beta) = \(\frac{d_0}{d_u}\)
\(\large{ d_o }\) = orifice or nozzle diameter
\(\large{ d_u }\) = upstream pipe inside diameter from orifice or nozzle