Tee Plate Welds

Written by Jerry Ratzlaff on . Posted in Welding

Welding Related Articles

 

bplc 1A

Axial Force on CJP Fillet Weld formula

\(\large{ \sigma = \frac{ P }{ t \; L }     }\)   

Where:

\(\large{ \sigma }\) (Greek symbol sigma) = stress in weld

\(\large{ L }\) = length of weld

\(\large{ t }\) = plate thickness

\(\large{ P }\) = total axial force

 

bplc 4

Bending Moment on CJP Fillet Weld formula

\(\large{ \sigma = \frac{ 6 \; M }{ L \; t^2 }     }\)   

Where:

\(\large{ \sigma }\) (Greek symbol sigma) = stress in weld

\(\large{ M }\) = bending moment

\(\large{ t }\) = plate thickness

\(\large{ L }\) = length of welds

 

bplc 4

Perpendicular Force on CJP Fillet Weld formulas

\(\large{ \sigma =  \frac{ 6 \; P \; H }{  L \; t^2  }     }\)   
\(\large{ \tau = \frac{ P }{  L \; t  }     }\)  

Where:

\(\large{ \sigma }\) (Greek symbol sigma) = stress in weld

\(\large{ \tau }\) (Greak symbol tau) = shear stress

\(\large{ H }\) = height of lever arm

\(\large{ L }\) = length of welds

\(\large{ t }\) = plate thickness

\(\large{ P }\) = total applied force

 

bplc 4

Axial Force on CJP Fillet Weld formula

\(\large{ \sigma = \frac{ P }{   \left( h_1 \;+\; h_2 \right)  \; L  }     }\)  

Where:

\(\large{ \sigma }\) (Greek symbol sigma) = stress in weld

\(\large{ L }\) = length of welds

\(\large{ P }\) = total applied force

\(\large{ h_1 }\) = weld penetration

\(\large{ h_2 }\) = weld penetration

 

bplc 4

Bending Moment on CJP Fillet Weld formula

\(\large{ \sigma = \frac{ 3\;t\;M }{ L\;h \; \left( 3\;t^2 \;-\; 6\;t\;h \;+\; 4\;h^2     \right)   }     }\)   

Where:

\(\large{ \sigma }\) (Greek symbol sigma) = stress in weld

\(\large{ M }\) = bending moment

\(\large{ L }\) = length of welds

\(\large{ t }\) = plate thickness

\(\large{ h }\) = weld penetration

 

bplc 4

Perpendicular Force on CJP Fillet Weld formulas

\(\large{ \sigma = \frac{ 3\;t\;P\;H }{ L\;h \; \left( 3\;t^2 \;-\; 6\;t\;h \;+\; 4\;h^2     \right)   }     }\)   
\(\large{ \tau = \frac{ P }{ 2\; L \; h  }     }\)  

Where:

\(\large{ \sigma }\) (Greek symbol sigma) = stress in weld

\(\large{ \tau }\) (Greak symbol tau) = shear stress

\(\large{ H }\) = height of lever arm

\(\large{ L }\) = length of welds

\(\large{ t }\) = plate thickness

\(\large{ P }\) = total applied force

\(\large{ h }\) = weld penetration

 

bplc 4

Axial Force on PJP Fillet Weld formula

\(\large{ \sigma = \frac{ 0.707 \; P }{ h \; L  }     }\)   

Where:

\(\large{ \sigma }\) (Greek symbol sigma) = stress in weld

\(\large{ h }\) = weld thickness

\(\large{ L }\) = length of welds

\(\large{ P }\) = total applied force

 

bplc 4

Bending Moment on PJP Fillet Weld formula

\(\large{ \sigma = \frac{ 1.414 \; M }{ h \; L \; \left( t \;+\; h \right)   }     }\)   

Where:

\(\large{ \sigma }\) (Greek symbol sigma) = stress in weld

\(\large{ M }\) = bending moment

\(\large{ t }\) = plate thickness

\(\large{ h }\) = weld thickness

\(\large{ L }\) = length of welds

 

bplc 4

Perpendicular Force on PJP Fillet Weld formulas

\(\large{ \sigma = \frac{ P }{ L\;h \; \left( t \;+\; h \right) } \; \sqrt{ 2 \; H^2 \;+\;  \frac{ \left( t \;+\; h \right)^2  }{ 2 }   }   }\)   
\(\large{ \tau = \frac{ 0.707 \; P }{ L \; h  }     }\)  

Where:

\(\large{ \sigma }\) (Greek symbol sigma) = stress in weld

\(\large{ \tau }\) (Greak symbol tau) = shear stress

\(\large{ H }\) = height of lever arm

\(\large{ L }\) = length of welds

\(\large{ t }\) = plate thickness

\(\large{ P }\) = total applied force

\(\large{ h }\) = weld penetration

 

Tags: Equations for Welded Stress and Strain