# Tee Plate Welds

Written by Jerry Ratzlaff on . Posted in Welding

## Axial Force on CJP Fillet Weld formula

 $$\large{ \sigma = \frac{ P }{ t \; L } }$$

### Where:

$$\large{ \sigma }$$ (Greek symbol sigma) = stress in weld

$$\large{ L }$$ = length of weld

$$\large{ t }$$ = plate thickness

$$\large{ P }$$ = total axial force

## Bending Moment on CJP Fillet Weld formula

 $$\large{ \sigma = \frac{ 6 \; M }{ L \; t^2 } }$$

### Where:

$$\large{ \sigma }$$ (Greek symbol sigma) = stress in weld

$$\large{ M }$$ = bending moment

$$\large{ t }$$ = plate thickness

$$\large{ L }$$ = length of welds

## Perpendicular Force on CJP Fillet Weld formulas

 $$\large{ \sigma = \frac{ 6 \; P \; H }{ L \; t^2 } }$$ $$\large{ \tau = \frac{ P }{ L \; t } }$$

### Where:

$$\large{ \sigma }$$ (Greek symbol sigma) = stress in weld

$$\large{ \tau }$$ (Greak symbol tau) = shear stress

$$\large{ H }$$ = height of lever arm

$$\large{ L }$$ = length of welds

$$\large{ t }$$ = plate thickness

$$\large{ P }$$ = total applied force

## Axial Force on CJP Fillet Weld formula

 $$\large{ \sigma = \frac{ P }{ \left( h_1 \;+\; h_2 \right) \; L } }$$

### Where:

$$\large{ \sigma }$$ (Greek symbol sigma) = stress in weld

$$\large{ L }$$ = length of welds

$$\large{ P }$$ = total applied force

$$\large{ h_1 }$$ = weld penetration

$$\large{ h_2 }$$ = weld penetration

## Bending Moment on CJP Fillet Weld formula

 $$\large{ \sigma = \frac{ 3\;t\;M }{ L\;h \; \left( 3\;t^2 \;-\; 6\;t\;h \;+\; 4\;h^2 \right) } }$$

### Where:

$$\large{ \sigma }$$ (Greek symbol sigma) = stress in weld

$$\large{ M }$$ = bending moment

$$\large{ L }$$ = length of welds

$$\large{ t }$$ = plate thickness

$$\large{ h }$$ = weld penetration

## Perpendicular Force on CJP Fillet Weld formulas

 $$\large{ \sigma = \frac{ 3\;t\;P\;H }{ L\;h \; \left( 3\;t^2 \;-\; 6\;t\;h \;+\; 4\;h^2 \right) } }$$ $$\large{ \tau = \frac{ P }{ 2\; L \; h } }$$

### Where:

$$\large{ \sigma }$$ (Greek symbol sigma) = stress in weld

$$\large{ \tau }$$ (Greak symbol tau) = shear stress

$$\large{ H }$$ = height of lever arm

$$\large{ L }$$ = length of welds

$$\large{ t }$$ = plate thickness

$$\large{ P }$$ = total applied force

$$\large{ h }$$ = weld penetration

## Axial Force on PJP Fillet Weld formula

 $$\large{ \sigma = \frac{ 0.707 \; P }{ h \; L } }$$

### Where:

$$\large{ \sigma }$$ (Greek symbol sigma) = stress in weld

$$\large{ h }$$ = weld thickness

$$\large{ L }$$ = length of welds

$$\large{ P }$$ = total applied force

## Bending Moment on PJP Fillet Weld formula

 $$\large{ \sigma = \frac{ 1.414 \; M }{ h \; L \; \left( t \;+\; h \right) } }$$

### Where:

$$\large{ \sigma }$$ (Greek symbol sigma) = stress in weld

$$\large{ M }$$ = bending moment

$$\large{ t }$$ = plate thickness

$$\large{ h }$$ = weld thickness

$$\large{ L }$$ = length of welds

## Perpendicular Force on PJP Fillet Weld formulas

 $$\large{ \sigma = \frac{ P }{ L\;h \; \left( t \;+\; h \right) } \; \sqrt{ 2 \; H^2 \;+\; \frac{ \left( t \;+\; h \right)^2 }{ 2 } } }$$ $$\large{ \tau = \frac{ 0.707 \; P }{ L \; h } }$$

### Where:

$$\large{ \sigma }$$ (Greek symbol sigma) = stress in weld

$$\large{ \tau }$$ (Greak symbol tau) = shear stress

$$\large{ H }$$ = height of lever arm

$$\large{ L }$$ = length of welds

$$\large{ t }$$ = plate thickness

$$\large{ P }$$ = total applied force

$$\large{ h }$$ = weld penetration